首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
Myelodysplastic syndromes (MDS) are characterized by abnormal and dysplastic maturation of all blood lineages. Even though epigenetic alterations have been seen in MDS marrow progenitors, very little is known about the molecular alterations in dysplastic peripheral blood cells. We analyzed the methylome of MDS leukocytes by the HELP assay and determined that it was globally distinct from age-matched controls and was characterized by numerous novel, aberrant hypermethylated marks that were located mainly outside of CpG islands and preferentially affected GTPase regulators and other cancer-related pathways. Additionally, array comparative genomic hybridization revealed that novel as well as previously characterized deletions and amplifications could also be visualized in peripheral blood leukocytes, thus potentially reducing the need for bone marrow samples for future studies. Using integrative analysis, potentially pathogenic genes silenced by genetic deletions and aberrant hypermethylation in different patients were identified. DOCK4, a GTPase regulator located in the commonly deleted 7q31 region, was identified by this unbiased approach. Significant hypermethylation and reduced expression of DOCK4 in MDS bone marrow stem cells was observed in two large independent datasets, providing further validation of our findings. Finally, DOCK4 knockdown in primary marrow CD34(+) stem cells led to decreased erythroid colony formation and increased apoptosis, thus recapitulating the bone marrow failure seen in MDS. These findings reveal widespread novel epigenetic alterations in myelodysplastic leukocytes and implicate DOCK4 as a pathogenic gene located on the 7q chromosomal region.  相似文献   
3.
Myelosuppressive cytokines, in particular IFN-gamma and TNF-alpha, play an important role in the pathogenesis of idiopathic aplastic anemia in humans. It is unknown whether these negative regulators of hemopoiesis suppress stem cells by activating a common signaling cascade or via distinct nonoverlapping pathways. In this study, we provide evidence that a common element in signaling for IFN-gamma and TNF-alpha in human hemopoietic progenitors is the p38/MapKapK-2 signaling cascade. Our studies indicate that pharmacological inhibition of p38 reverses the suppressive effects of IFN-gamma and TNF-alpha on normal human bone marrow-derived erythroid and myeloid progenitors. Most importantly, inhibition of p38 strongly enhances hemopoietic progenitor colony formation from aplastic anemia bone marrows in vitro. Thus, p38 appears to play a critical role in the pathogenesis of aplastic anemia, suggesting that selective pharmacological inhibitors of this kinase may prove useful in the treatment of aplastic anemia and other cytokine-mediated bone marrow failure syndromes.  相似文献   
4.
Several signaling cascades are activated during engagement of the erythropoietin receptor to mediate the biological effects of erythropoietin. The members of the insulin receptor substrate (IRS) family of proteins play a central role in signaling for various growth factor receptors and cytokines by acting as docking proteins for the SH2 domains of signaling elements, linking cytokine receptors to diverse downstream pathways. In the present study we provide evidence that the recently cloned IRS-related proteins, Gab1 and Gab2, of the Gab family of proteins, are rapidly phosphorylated on tyrosine during erythropoietin treatment of erythropoietin-responsive cells and provide docking sites for the engagement of the SHP2 phosphatase and the p85 subunit of the phosphatidylinositol 3'-kinase. Furthermore, our data show that Gab1 is the primary IRS-related protein activated by erythropoietin in primary erythroid progenitor cells. In studies to identify the erythropoietin receptor domains required for activation of Gab proteins, we found that tyrosines 425 and 367 in the cytoplasmic domain of the erythropoietin receptor are required for the phosphorylation of Gab2. Taken together, our data demonstrate that Gab proteins are engaged in erythropoietin signaling to mediate downstream activation of the SHP2 and phosphatidylinositol 3'-kinase pathways and possibly participate in the generation of the erythropoietin-induced mitogenic responses.  相似文献   
5.
6.
7.
Type I interferons (IFNs) are potent regulators of normal hematopoiesis in vitro and in vivo, but the mechanisms by which they suppress hematopoietic progenitor cell growth and differentiation are not known. In the present study we provide evidence that IFN alpha and IFN beta induce phosphorylation of the p38 mitogen-activated protein (Map) kinase in CD34+-derived primitive human hematopoietic progenitors. Such type I IFN-inducible phosphorylation of p38 results in activation of the catalytic domain of the kinase and sequential activation of the MAPK-activated protein kinase-2 (MapKapK-2 kinase), indicating the existence of a signaling cascade, activated downstream of p38 in hematopoietic progenitors. Our data indicate that activation of this signaling cascade by the type I IFN receptor is essential for the generation of the suppressive effects of type I IFNs on normal hematopoiesis. This is shown by studies demonstrating that pharmacological inhibitors of p38 reverse the growth inhibitory effects of IFN alpha and IFN beta on myeloid (colony-forming granulocytic-macrophage) and erythroid (burst-forming unit-erythroid) progenitor colony formation. In a similar manner, transforming growth factor beta, which also exhibits inhibitory effects on normal hematopoiesis, activates p38 and MapKapK-2 in human hematopoietic progenitors, whereas pharmacological inhibitors of p38 reverse its suppressive activities on both myeloid and erythroid colony formation. In further studies, we demonstrate that the primary mechanism by which the p38 Map kinase pathway mediates hematopoietic suppression is regulation of cell cycle progression and is unrelated to induction of apoptosis. Altogether, these findings establish that the p38 Map kinase pathway is a common effector for type I IFN and transforming growth factor beta signaling in human hematopoietic progenitors and plays a critical role in the induction of the suppressive effects of these cytokines on normal hematopoiesis.  相似文献   
8.
The production of erythrocytes requires the massive synthesis of red cell-specific proteins including hemoglobin, cytoskeletal proteins, as well as membrane glycoproteins glycophorin A (GPA) and anion exchanger 1 (AE1). We found that during the terminal differentiation of human CD34+ erythroid progenitor cells in culture, key components of the endoplasmic reticulum (ER) protein translocation (Sec61α), glycosylation (OST48), and protein folding machinery, chaperones BiP, calreticulin (CRT), and Hsp90 were maintained to allow efficient red cell glycoprotein biosynthesis. Unexpected was the loss of calnexin (CNX), an ER glycoprotein chaperone, and ERp57, a protein-disulfide isomerase, as well as a major decrease of the cytosolic chaperones, Hsc70 and Hsp70, components normally involved in membrane glycoprotein folding and quality control. AE1 can traffic to the cell surface in mouse embryonic fibroblasts completely deficient in CNX or CRT, whereas disruption of the CNX/CRT-glycoprotein interactions in human K562 cells using castanospermine did not affect the cell-surface levels of endogenous GPA or expressed AE1. These results demonstrate that CNX and ERp57 are not required for major glycoprotein biosynthesis during red cell development, in contrast to their role in glycoprotein folding and quality control in other cells.The production of red blood cells involves the terminal differentiation of hematopoietic stem cells in the bone marrow followed by release into the peripheral blood (1, 2). Red blood cells remain in circulation for ∼120 days and require the prior production of abundant red cell-specific proteins including hemoglobin, cytoskeletal proteins, and membrane glycoproteins such as anion exchanger 1 (AE1)3 and glycophorin A (GPA). During differentiation, erythroid progenitor cells undergo extensive remodeling of their cytoskeleton and loss of nuclei and other organelles like the endoplasmic reticulum (ER). AE1 and GPA are known to be synthesized late in differentiation when these key cellular components are lost (3). The efficient biosynthesis of these red cell membrane glycoproteins, however, is expected to require robust ER assembly machinery involving protein translocation, N-glycosylation, and protein folding chaperones.The proper folding of membrane glycoproteins engages the quality control function of cytosolic and ER chaperone proteins (4, 5). Newly synthesized proteins undergo cycles of binding and release with chaperones, minimizing aggregation and facilitating folding. Chaperones also play a role in the retention and degradation of misfolded proteins and in apoptosis (6-8). The membrane-bound ER chaperone calnexin (CNX) and its luminal paralog calreticulin (CRT) interact with folding intermediates via their lectin and protein binding domains, thereby preventing aggregation (9). A wide variety of glycoprotein substrates have been identified, with some binding to one or both chaperones, and both have been shown to be vital in the prevention of aggregation and proper maturation of membrane glycoproteins (9, 10). Disruption of interactions with CNX and CRT can allow misfolded membrane glycoproteins to escape the ER and traffic to the plasma membrane (9).In the present study, we examined the integrity of the ER protein translocation, N-glycosylation, and quality control machinery during the differentiation of human CD34+ erythroid cells in culture. We found that specific components of the protein quality control system were completely lost (CNX and ERp57) or diminished (Hsc70 and Hsp70) before the production of the major glycoproteins, AE1 and GPA, was completed. Components of the protein translocation (Sec61α) and N-glycosylation machinery (OST48) were, however, maintained. Chaperones that play other roles in erythrocyte maturation and survival (CRT, BiP, and Hsp90) were also retained (11). AE1 was found to traffic efficiently to the plasma membrane in mouse embryonic fibroblasts completely lacking the ER chaperone CNX or CRT. Furthermore, disruption of CNX/CRT-glycoprotein interactions in human K562 cells did not affect the cell-surface expression of GPA or AE1. These results demonstrate that CNX and ERp57 are not required for the efficient synthesis and folding of red cell membrane glycoproteins during terminal erythropoiesis. The lack of engagement with the quality control and disulfide folding machinery may allow the more rapid production of red cell glycoproteins late in differentiation, sacrificing quality for quantity.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号