首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2015年   2篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  1994年   1篇
排序方式: 共有10条查询结果,搜索用时 296 毫秒
1
1.
2.
Kinetics of extrusion of the first polar body was examined as well as the effect of the time of stripping of the cumulus cells on this kinetics. In addition, the effects of time of stripping and time of insemination on developmental competence of the oocytes, as evaluated by the percentage of morulae and blastocysts, were studied. Polar body extrusion occurred in 80% of the oocytes between 12 and 18 h after the onset of maturation. The remainder of the oocytes did not extrude a polar body at all. Stripping of the cumulus at 12 h after the onset of maturation delayed polar body extrusion significantly by about 1 h. No significant differences were found in the percentage of oocytes that could be fertilized, and the percentage of oocytes that cleaved and developed to the morula and blastocyst stages, between oocytes that were stripped free of cumulus and inseminated at either 16 or 20 h after onset maturation. Oocytes that had extruded a polar body at either 16 or 20 h after onset maturation showed significantly higher percentages of cleavage and development than oocytes that had not extruded a polar body at those time points. However, the percentage of oocytes that could be fertilized was not affected.  相似文献   
3.
4.
5.
LAIR-1 (Leukocyte Associated Ig-like Receptor -1) is a collagen receptor that functions as an inhibitory receptor on immune cells. It has a soluble family member, LAIR-2, that also binds collagen and can interfere with LAIR-1/collagen interactions. Collagen is a main initiator for platelet adhesion and aggregation. Here, we explored the potential of soluble LAIR proteins to inhibit thrombus formation in vitro. LAIR-2/Fc but not LAIR-1/Fc inhibited collagen-induced platelet aggregation. In addition, LAIR-2/Fc also interfered with platelet adhesion to collagen at low shear rate (300 s−1; IC50 = 18 µg/ml) and high shear rate (1500 s−1; IC50 = 30 µg/ml). Additional experiments revealed that LAIR-2/Fc leaves interactions between collagen and α2β1 unaffected, but efficiently prevents binding of collagen to Glycoprotein VI and von Willebrand factor. Thus, LAIR-2/Fc has the capacity to interfere with platelet-collagen interactions mediated by Glycoprotein VI and the VWF/Glycoprotein Ib axis.  相似文献   
6.
Oxidative stress is an unavoidable byproduct of aerobic life. Molecular oxygen is essential for terrestrial metabolism, but it also takes part in many damaging reactions within living organisms. The combination of aerobic metabolism and iron, which is another vital compound for life, is enough to produce radicals through Fenton chemistry and degrade cellular components. DNA degradation is arguably the most damaging process involving intracellular radicals, as DNA repair is far from trivial. The assay presented in this article offers a quantitative technique to measure and visualize the effect of molecules and enzymes on radical-mediated DNA damage.The DNA protection assay is a simple, quick, and robust tool for the in vitro characterization of the protective properties of proteins or chemicals. It involves exposing DNA to a damaging oxidative reaction and adding varying concentrations of the compound of interest. The reduction or increase of DNA damage as a function of compound concentration is then visualized using gel electrophoresis. In this article we demonstrate the technique of the DNA protection assay by measuring the protective properties of the DNA-binding protein from starved cells (Dps). Dps is a mini-ferritin that is utilized by more than 300 bacterial species to powerfully combat environmental stressors. Here we present the Dps purification protocol and the optimized assay conditions for evaluating DNA protection by Dps.  相似文献   
7.
8.
BACKGROUND: T cell receptor (TCR) gene therapy represents an attractive anti-cancer treatment but requires further optimization of its efficacy and safety in clinically relevant models, such as those using a tumor antigen and TCR of human origin. Currently, however, there is no consensus as to what protocol is most optimal for retroviral human TCR gene transfer into primary murine T cells, most notably with respect to virus pseudo-type. METHODS: Primary murine T cells were transduced, expanded and subsequently tested for transgene expression, proliferation and antigen-specific function. To this end, murine leukemia virus (MLV) retroviruses were produced upon transfection of various packaging cells with genes encoding either green fluorescent protein (GFP) or TCRalphabeta specific for human melanoma antigen gp100(280-288) and the helper elements GAG/POL and ENV. Next to viral pseudotyping, the following parameters were studied: T cell densities; T cell activation; the amounts of IL-2 and the source of serum used to supplement medium. RESULTS: The pseudo-type of virus produced by packaging cells critically determines T cell transduction efficiencies. In fact, MLV-A and MLV-E pseudo-typed viruses derived from a co-culture of Phoenix-A and 293T cells resulted in T cell transduction efficiencies that were two-fold higher than those based on retroviruses expressing either VSV-G, GALV, MLV-A or MLV-E envelopes. In addition, T cell densities during transduction were inversely related to transduction efficiencies. Further optimization resulted in transduction efficiencies of over 90% for GFP, and 68% for both a murine and a human (i.e. murinized) TCR. Importantly, TCR-transduced T cells proliferate (i.e. showing a log increase in cell number in a few days) and show antigen-specific function. CONCLUSIONS: We set up a quick and versatile method to genetically modify primary murine T cells based on transient production of TCR-positive retroviruses, and show that retroviral gene transfer of a human TCR into primary murine T cells is critically improved by viral pseudo-typing with both MLV-A and MLV-E envelopes.  相似文献   
9.
Curved DNA binding protein A (CbpA) is a co-chaperone and nucleoid associated DNA binding protein conserved in most γ-proteobacteria. Best studied in Escherichia coli, CbpA accumulates to >2500 copies per cell during periods of starvation and forms aggregates with DNA. However, the molecular basis for DNA binding is unknown; CbpA lacks motifs found in other bacterial DNA binding proteins. Here, we have used a combination of genetics and biochemistry to elucidate the mechanism of DNA recognition by CbpA. We show that CbpA interacts with the DNA minor groove. This interaction requires a highly conserved arginine side chain. Substitution of this residue, R116, with alanine, specifically disrupts DNA binding by CbpA, and its homologues from other bacteria, whilst not affecting other CbpA activities. The intracellular distribution of CbpA alters dramatically when DNA binding is negated. Hence, we provide a direct link between DNA binding and the behaviour of CbpA in cells.  相似文献   
10.

We reviewed Coram et al. (Biodivers Conserv 30:2341–2359, 2021, https://doi.org/10.1007/s10531-021-02196-6), a paper that highlights the use of social media data to understand marine litter and marine mammals in Southeast Asia. While we commend its intent, we find that the methodology used and conclusions drawn portray an incomplete and inaccurate perception of how strandings, stranding response, and analysis of stranding data have been conducted in the region. By focusing on investigative results revealed by a very limited search of one social media platform (Facebook), using only English keywords, and insufficient ground-truthing, Coram et al. (2021) have, unintentionally, given the perception that Southeast Asian scientists have not conducted even the bare minimum of investigation required to better understand the issue of marine litter and its impact on marine mammals. In this commentary we provide a more accurate account of strandings research in Asia and include recommendations to improve future studies using social media to assess conservation issues.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号