首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2018年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   5篇
  2008年   3篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
pH-sensitive N-naphthyl-N,O-succinyl chitosan (NSCS) and N-octyl-N,O-succinyl chitosan (OSCS) polymeric micelles carriers have been developed to incorporate curcumin (CUR) for colon-targeted drug delivery. The physical entrapment methods (dialysis, co­solvent evaporation, dropping, and O/W emulsion) were applied. The CUR-loaded micelles prepared by the dialysis method presented the highest loading capacity. Increasing initial amount of CUR from 5 to 40 wt% to polymer resulted in the increase in loading capacity of the polymeric micelles. Among the hydrophobic cores, there were no significant differences in the loading capacity of CUR-loaded micelles. The particle sizes of all CUR-loaded micelles were in the range of 120–338 nm. The morphology of the micelles changed after being contacted with medium with different pH values, confirming the pH-responsive properties of the micelles. The release characteristics of curcumin from all CUR-loaded micelles were pH-dependent. The percent cumulative release of curcumin from all CUR-loaded micelles in simulated gastric fluid (SGF) was limited to about 20%. However, the release amount was significantly increased after contacted with simulated intestinal fluid (SIF) (50–55%) and simulated colonic fluid (SCF) (60–70%). The released amount in SIF and SCF was significantly greater than the release of CUR from CUR powder. CUR-loaded NSCS exhibited the highest anti-cancer activity against HT-29 colorectal cancer cells. The stability studies indicated that all CUR-loaded micelles were stable for at least 90 days. Therefore, the colon targeted, pH-sensitive NSCS micelles may have potential to be a prospective candidate for curcumin delivery to the colon.  相似文献   
2.
The aim of this study was to investigate the effect of methylated N-(4-N,N-dimethylaminobenzyl) chitosan, TM-Bz-CS, on the paracellular permeability of Caco-2 cell monolayers and its toxicity towards the cell lines. The factors affecting epithelial permeability, e.g., degree of quaternization (DQ) and extent of dimethylaminobenzyl substitution (ES), were evaluated in intestinal cell monolayers of Caco-2 cells using the transepithelial electrical resistance and permeability of Caco-2 cell monolayers, with fluorescein isothiocyanate dextran 4,400 (FD-4) as a model compound for paracellular tight-junction transport. Cytotoxicity was evaluated with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide viability assay. The results revealed that, at pH 7.4, TM-Bz-CS appeared to increase cell permeability in a concentration-dependent manner, and this effect was relatively reversible at lower doses of 0.05–0.5 mM. Higher DQ and the ES caused the permeability of FD-4 to be higher. The cytotoxicity of TM-Bz-CS depended on concentration, %DQ, and %ES. These studies demonstrated that this novel modified chitosan has potential as an absorption enhancer.  相似文献   
3.
RNA interference (RNAi) is a promising strategy to combat shrimp viral pathogens at lab-scale experiments. Development of effective orally delivered agents for double-stranded (ds)RNA is necessary for RNAi application at farm level. Since continuous shrimp cell lines have not been established, we are developing a dsRNA-delivery system in Spodoptera frugiperda (Sf9) cells for studying in vitro RNAi-mediated gene silencing of shrimp virus. Sf9 cells challenged with yellow head virus (YHV) were used for validating nanoparticles as effective dsRNA carriers. Inexpensive and biodegradable polymers, chitosan and its quarternized derivative (QCH4), were formulated with long dsRNA (>100 bp) targeting YHV. Their morphology and physicochemical properties were examined. When treated with chitosan- and QCH4-dsRNA complexes, at least 50% reduction in YHV infection in Sf9 cells relative to the untreated control was evident at 24h post infection with low cytoxicity. Inhibitory effects of chitosan- and QCH4-dsRNA complexes were comparable to that of dsRNA formulated with Cellfectin(?), a commercial lipid-based transfection reagent. The natural and quaternized chitosan prepared in this study can be used for shrimp virus-specific dsRNA delivery in insect cultures, and have potential for future development of dsRNA carriers in shrimp feed.  相似文献   
4.
The 9 quaternary ammonium chitosans containing monosaccharides or disaccharides moieties were successfully synthesized by reductive N-alkylation then quaternized by N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride (Quat-188). The chemical structures of quaternary ammonium chitosan derivatives were characterized by ATR-FTIR and 1H NMR spectroscopy. The degree of N-substitution (DS) and the degree of quaternization (DQ) were determined by 1H NMR spectroscopic method. It was found that the DS was in the range of 12–40% while the DQ was in the range of 90–97%. The results indicated that the O-alkylation was occured in this condition. Moreover, all quaternary ammonium chitosan derivatives were highly water-soluble at acidic, basic, and neutral pH. Minimum inhibitory concentration (MIC) antibacterial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria compared to quaternary ammonium N-octyl and N-benzyl chitosan derivatives. The quaternary ammonium mono and disaccharide chitosan derivatives showed very high MIC values which were in the range of 32 to >256 μg/mL against both bacteria. Also it was found that the antibacterial activity decreased with increasing the DS. This was due to the increased hydrophilicity of mono and disaccharide moieties. On the other hand, the low MIC values (8–32 μg/mL) were obviously observed when the DS of quaternary ammonium N-octyl and N-benzyl chitosan derivatives was lower than 18%. The results showed that the presence of hydrophobic moiety such as the N-benzyl group enhanced the antibacterial activity compared to the hydrophilic moiety against both bacteria.  相似文献   
5.
The methylated N-aryl chitosan derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMCh) and methylated N-(4-pyridylmethyl) chitosan chloride (MPyMeCh), were synthesized by two steps, the reductive amination and the methylation. The physicochemical properties of chitosan derivatives were determined by ATR-FTIR, NMR, X-ray diffraction (XRD) and thermogravimetric (TG) techniques. The XRD analysis showed that the crystallinity and thermal stability of methylated chitosan derivatives were lower than those of chitosan. The effects of degree of quaternization (DQ), polymer structure and positive charge location on mucoadhesive property and cytotoxicity were investigated by using a mucin particle method and MTT assay compared to N,N,N-trimethylammonium chitosan chloride (TMChC). It was found that the mucoadhesive property and cytotoxicity increased with increasing DQ. At the DQ of 65%, the mucoadhesive property of the MDMCMCh was twofold lower than that of the TMChC. However, this phenomenon did not affect the mucoadhesive property when the DQ was higher than 65%. Surprisingly, the MPyMeCh showed the lowest toxicity even with the high DQ. These could be due to the resonance effect of the positive charge in the pyridine ring and the molecular weight after methylation. Finally, our result revealed that the mucoadhesive property was dependent on the DQ and polymer structure whereas the cytotoxicity was dependent on the combination of the polymer structure, positive charge location and molecular weight after methylation.  相似文献   
6.
The aim of this study was to investigate the effects of a type of hydrophobic moiety, extent of N-substitution (ES), and degree of quaternization (DQ) of chitosan (CS) on the transepithelial electrical resistance and permeability of Caco-2 cells monolayer, using fluorescein isothiocyanate dextran 4,400 (FD-4) as the model compound for paracellular tight junction transport. CS was substituted with hydrophobic moiety, an aliphatic aldehyde (n-octyl) or aromatic aldehyde (benzyl), for the improved hydrophobic interaction with cell membrane, and they were quaternized with Quat-188 to render CS soluble. The factors affecting the epithelial permeability have been evaluated in the intestinal cell monolayers, Caco-2 cells. Cytotoxicity was evaluated by using the trypan blue and MTT viability assay. The results revealed that at pH 7.4 CSQ appeared to increase cell permeability in dose-dependent manner, and this effect was relatively reversible at the lower doses of 0.05–1.25 mM. The higher DQ and ES caused the higher permeability of FD-4. Cytotoxicity of CSQ was concentration, %DQ, and %ES dependent. Substitution with hydrophobic moiety caused decreasing in permeability of FD-4 and cytotoxicity by benzyl group had more effect than octyl group. These studies demonstrated that these novel modified chitosan derivatives had potential for using as absorption enhancers.  相似文献   
7.
Chemical modification of chitosan by introducing quaternary ammonium moieties into the polymer backbone renders excellent antimicrobial activity to the adducts. In the present study, we have synthesized 17 derivatives of chitosan consisting of a variety of N-aryl substituents bearing either electron-donating or electron-withdrawing groups. Selective N-arylation of chitosan was performed via Schiff bases formed by the reaction between the 2-amino groups of the glucosamine residue of chitosan with aromatic aldehydes under acidic conditions, followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Each of the derivatives was further quaternized using N-(3-chloro-2-hydroxypropyl)trimethylammonium chloride (Quat-188) as the quaternizing agent that reacted with either the primary amino or hydroxyl groups of the glucosamine residue of chitosan. The resulting quaternized materials were water soluble at neutral pH. Minimum inhibitory concentration (MIC) antimicrobial studies of these materials were carried out on Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria in order to explore the impact of the extent of N-substitution (ES) on their biological activities. At ES less than 10%, the presence of the hydrophobic substituent, such as benzyl and thiophenylmethyl, yielded derivatives with lower MIC values than chitosan Quat-188. Derivatives with higher ES exhibited reduced antibacterial activity due to low quaternary ammonium moiety content. At the same degree of quaternization, all quaternized N-aryl chitosan derivatives bearing either electron-donating or electron-withdrawing substituents did not contribute antibacterial activity relative to chitosan Quat-188. Neither the functional group nor its orientation impacted the MIC values significantly.  相似文献   
8.
In this study, three kinds of methylated chitosan containing different aromatic moieties were synthesized by two steps, reductive amination and methylation, respectively. The chemical structures of all methylated derivatives, methylated N-(4-N,N-dimethylaminocinnamyl) chitosan chloride (MDMCMChC), methylated N-(4-N,N-dimethylaminobenzyl) chitosan chloride (MDMBzChC), and methylated N-(4-pyridinylmethyl) chitosan chloride (MPyMeChC) were characterized by ATR–FTIR and 1H NMR spectroscopy. The complexes between the chitosan derivatives and plasmid DNA at different N/P ratios were characterized by gel electrophoresis, dynamic light scattering, and atomic force microscopic techniques. The smallest particle sizes of these complexes were obtained at N/P ratio of 5 and ranged from 95 to 124 nm while the zeta-potentials were in the range of 18–27 mV. Transfection efficiencies of these complexes were investigated by expression of the plasmid DNA encoding green fluorescence protein (pEGFP-C2) on human hepatoma cells (Huh 7 cells) compared to N,N,N-trimethyl chitosan chloride (TMChC). The rank of transfection efficiency was MPyMeChC > MDMBzChC > TMChC > MDMCMChC, respectively. The cytotoxicity of these complexes was also studied by MTT assay where the MPyMeChC complex exhibited less toxicity than other derivatives even at high N/P ratios. Therefore, MPyMeChC demonstrated potential as its safe and efficient gene carrier.  相似文献   
9.
Selective N-arylation of chitosan was performed via a Schiff bases formed by the reaction between the 2-amino group of glucosamine residue of chitosan with an aromatic aldehyde under acidic condition followed by reduction of the Schiff base intermediate with sodium cyanoborohydride (Borch reduction). Aromatic aldehydes bearing either an electron donating or electron withdrawing substituent were used. The chemical structures and thermal properties of the N-aryl chitosans were characterized by FT-IR, (1)H NMR, (13)C NMR, TGA, and DSC. The extent of N-substitution (ES) was influenced by the molar ratio of the aldehyde to the glucosamine residue of chitosan, the reaction time and the substituent on the aromatic ring. Lower ESs resulted from N-arylation using an aldehyde with an electron donating substituent. A linear relationship between the targeted ES and the ES obtained was observed when aldehydes bearing electron withdrawing substituents were employed.  相似文献   
10.
N-Arylated chitosans were synthesized via Schiff bases formed by the reaction between the primary amino group of chitosan with aromatic aldehydes followed by reduction of the Schiff base intermediates with sodium cyanoborohydride. Treatment of chitosan containing N,N-dimethylaminobenzyl and N-pyridylmethyl substituents with iodomethane under basic conditions led to quaternized N-(4-N,N-dimethylaminobenzyl) chitosan and quaternized N-(4-pyridylmethyl) chitosan. Methylation occurred at either N,N-dimethylaminobenzyl and N-pyridylmethyl groups before the residual primary amino groups of chitosan GlcN units were substituted. The total degree of quaternization of each chitosan varied depending on the extent of N-substitution (ES) and the sodium hydroxide concentration used in methylation. Increasing ES increased the total degree of quaternization but reduced attack at the GlcN units. N,N-dimethylation and N-methylation at the primary amino group of chitosan decreased at higher ES’s. Higher total degrees of quaternization and degrees of O-methylation resulted when higher concentrations of sodium hydroxide were used. The molecular weight of chitosan before and after methylation was determined by gel permeation chromatography under mild acidic condition. The methylation of the N,N-dimethylaminobenzyl derivative with iodomethane was accompanied by numerous backbone cleavages and a concomitant reduction in the molecular weight of the methylated product was observed. The antibacterial activity of water-soluble methylated chitosan derivatives was determined using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria; minimum inhibitory concentrations (MIC) of these derivatives ranged from 32 to 128 μg/mL. The presence of the N,N-dimethylaminobenzyl and N-pyridylmethyl substituents on chitosan backbone after methylation did not enhance the antibacterial activity against S. aureus. However, N-(4-N,N-dimethylaminobenzyl) chitosan with degree of quaternization at the aromatic substituent and the primary amino group of chitosan of 17% and 16–30%, respectively, exhibited a slightly increased antibacterial activity against E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号