首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   6篇
  国内免费   1篇
  2021年   1篇
  2016年   2篇
  2013年   2篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2003年   2篇
  2001年   3篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1984年   1篇
  1973年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
2.
Engineered bacterial sensors have potential applications in human health monitoring, environmental chemical detection, and materials biosynthesis. While such bacterial devices have long been engineered to differentiate between combinations of inputs, their potential to process signal timing and duration has been overlooked. In this work, we present a two‐input temporal logic gate that can sense and record the order of the inputs, the timing between inputs, and the duration of input pulses. Our temporal logic gate design relies on unidirectional DNA recombination mediated by bacteriophage integrases to detect and encode sequences of input events. For an E. coli strain engineered to contain our temporal logic gate, we compare predictions of Markov model simulations with laboratory measurements of final population distributions for both step and pulse inputs. Although single cells were engineered to have digital outputs, stochastic noise created heterogeneous single‐cell responses that translated into analog population responses. Furthermore, when single‐cell genetic states were aggregated into population‐level distributions, these distributions contained unique information not encoded in individual cells. Thus, final differentiated sub‐populations could be used to deduce order, timing, and duration of transient chemical events.  相似文献   
3.
β-Chitin was extracted from squid pens and deacetylated to β-chitosan. Both polymers were treated with tosyl chloride, potassium thioacetate and sodium methoxide to form 6-mercaptochitin and 6-mercaptochitosan, respectively. The degrees of substitution were lower for the chitosan derivatives and both types of polymer were less substituted than related polymers prepared from α-chitin. The thiolated polymers were reacted with MMA to form grafted copolymers. The solvent had an influence on the success of the polymerisation with the chitosan polymers giving highly grafted materials in aqueous acetic acid solution.  相似文献   
4.
The Galanthus nivalis agglutinin (GNA) is synthesized as a preproprotein. To corroborate the role of the different targeting peptides in the topogenesis of GNA and related proteins, different constructs were made whereby both the complete original GNA gene and different truncated sequences were coupled to the enhanced green fluorescent protein (EGFP). In addition, a GNA ortholog from rice that lacks the signal peptide and C-terminal propeptide sequence was fused to EGFP. These fusion constructs were expressed in tobacco BY-2 cells and their localization analyzed by confocal fluorescence microscopy. We observed that the processed preproprotein of GNA was directed towards the vacuolar compartment, whereas both the truncated forms of GNA corresponding to the mature lectin polypeptide and the rice ortholog of GNA were located in the nucleus and the cytoplasm. It can be concluded, therefore, that removal of the C-terminal propeptide and the signal peptide is sufficient to change the subcellular targeting of a normally vacuolar protein to the nuclear/cytoplasmic compartment of the BY-2 cells. These findings support the proposed hypothesis that cytoplasmic/nuclear GNA-like proteins and their vacuolar homologs are evolutionarily related and that the classical GNA-related lectins might have evolved from cytoplasmic orthologs through an evolutionary event involving the insertion of a signal peptide and a C-terminal propeptide.  相似文献   
5.
The plant endoplasmic reticulum (ER) contains functionally distinct subdomains at which cargo molecules are packed into transport carriers. To study these ER export sites (ERES), we used tobacco (Nicotiana tabacum) leaf epidermis as a model system and tested whether increased cargo dosage leads to their de novo formation. We have followed the subcellular distribution of the known ERES marker based on a yellow fluorescent protein (YFP) fusion of the Sec24 COPII coat component (YFP-Sec24), which, differently from the previously described ERES marker, tobacco Sar1-YFP, is visibly recruited at ERES in both the presence and absence of overexpressed membrane cargo. This allowed us to quantify variation in the ERES number and in the recruitment of Sec24 to ERES upon expression of cargo. We show that increased synthesis of membrane cargo leads to an increase in the number of ERES and induces the recruitment of Sec24 to these ER subdomains. Soluble proteins that are passively secreted were found to leave the ER with no apparent up-regulation of either the ERES number or the COPII marker, showing that bulk flow transport has spare capacity in vivo. However, de novo ERES formation, as well as increased recruitment of Sec24 to ERES, was found to be dependent on the presence of the diacidic ER export motif in the cytosolic domain of the membrane cargo. Our data suggest that the plant ER can adapt to a sudden increase in membrane cargo-stimulated secretory activity by signal-mediated recruitment of COPII machinery onto existing ERES, accompanied by de novo generation of new ERES.  相似文献   
6.
The Golgi apparatus in plants is organized as a multitude of individual stacks that are motile in the cytoplasm and in close association with the endoplasmic reticulum (ER) (Boevink et al. in Plant J 15:441–447, 1998). These stacks operate as a sorting centre for cargo molecules, providing modification and redirection to other organelles as appropriate. In the post-Golgi direction, these include vacuole and plasma membrane, and specialized transport routes to each are required to prevent mislocalization. Recent evidence in plant cells points to the existence of post-Golgi organelles that function as intermediate stations for efficient protein traffic, as well as to the influence of small GTPases such as Rabs and ARFs on post-Golgi trafficking. This review focuses on the latest findings on post-Golgi trafficking routes and on the involvement of GTPases and their effectors on the trafficking of proteins in the plant secretory pathway. Sally L. Hanton and Loren A. Matheson have contributed equally to this work.  相似文献   
7.
The functionality of the secretory pathway relies on the efficient transfer of cargo molecules from their site of synthesis in the endoplasmic reticulum (ER) to successive compartments within the pathway. Although transport mechanisms of secretory proteins have been studied in detail in various non-plant systems, it is only recently that our knowledge of secretory routes in plants has expanded dramatically. This review focuses on exciting new findings concerning the exit mechanisms of cargo proteins from the plant ER and the role of ER export sites in this process.  相似文献   
8.
In plants, differentiation of subdomains of the endoplasmic reticulum (ER) dedicated to protein export, the ER export sites (ERES), is influenced by the type of export-competent membrane cargo to be delivered to the Golgi. This raises a fundamental biological question: is the formation of transport intermediates at the ER for trafficking to the Golgi always regulated in the same manner? To test this, we followed the distribution and activity of two plant Sar1 isoforms. Sar1 is the small GTPase that regulates assembly of COPII (coat protein complex II) on carriers that transport secretory cargo from ER to Golgi. We show that, in contrast to a tobacco Sar1 isoform, the two Arabidopsis Sar1 GTPases were localised at ERES, independently of co-expression of Golgi-destined membrane cargo in tobacco cells. Although both isoforms labelled ERES, one was found to partition with the membrane fraction to a greater extent. The different distribution of fluorescent fusions of the two isoforms was influenced by the nature of an amino acid residue at the C-terminus of the protein, suggesting that the requirements for membrane association of the two GTPases are not equal. Furthermore, functional analyses based on the secretion of the bulk flow marker α-amylase indicated that over-expression of GTP-restricted mutants of the two isoforms caused different levels of ER export inhibition. These novel results indicate a functional heterogeneity among plant Sar1 isoforms.  相似文献   
9.
Sixteen new thiazine-quinoline-quinones have been synthesised, plus one bicyclic analogue. These compounds inhibited neutrophil superoxide production in vitro with IC(50)s as low 60 nM. Compounds with high in vitro anti-inflammatory activity were also tested in a mouse model of acute inflammation. The most active compounds inhibited both neutrophil infiltration and superoxide production at doses 2.5 micromol/kg, highlighting their potential for development as novel NSAIDs.  相似文献   
10.
Protein export from the endoplasmic reticulum (ER) is mediated by the accumulation of COPII proteins such as Sar1, Sec23/24 and Sec13/31 at specialized ER export sites (ERES). Although the distribution of COPII components in mammalian and yeast systems is established, a unified model of ERES dynamics has yet to be presented in plants. To investigate this, we have followed the dynamics of fluorescent fusions to inner and outer components of the coat, AtSec24 and AtSec13, in three different plant model systems: tobacco and Arabidopsis leaf epidermis, as well as tobacco BY-2 suspension cells. In leaves, AtSec24 accumulated at Golgi-associated ERES, whereas AtSec13 showed higher levels of cytosolic staining compared with AtSec24. However, in BY-2 cells, both AtSec13 and AtSec24 labelled Golgi-associated ERES, along with AtSec24. To correlate the distribution of the COPII coat with the dynamics of organelle movement, quantitative live-cell imaging analyses demonstrated that AtSec24 and AtSec13 maintained a constant association with Golgi-associated ERES, irrespective of their velocity. However, recruitment of AtSec24 and AtSec13 to ERES, as well as the number of ERES marked by these proteins, was influenced by export of membrane cargo proteins from the ER to the Golgi. Additionally, the increased availability of AtSec24 affected the distribution of AtSec13, inducing recruitment of this outer COPII coat component to ERES. These results provide a model that, in plants, protein export from the ER occurs via sequential recruitment of inner and outer COPII components to form transport intermediates at mobile, Golgi-associated ERES.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号