首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Trypanosoma brucei causes African sleeping sickness, a disease for which existing chemotherapies are limited by their toxicity or lack of efficacy. We have found that four parasites, including T. brucei, contain genes where two or four thymidine kinase (TK) sequences are fused into a single open reading frame. The T. brucei full-length enzyme as well as its two constituent parts, domain 1 and domain 2, were separately expressed and characterized. Of potential interest for nucleoside analog development, T. brucei TK was less discriminative against purines than human TK1 with the following order of catalytic efficiencies: thymidine > deoxyuridine ≫ deoxyinosine > deoxyguanosine. Proteins from the TK1 family are generally dimers or tetramers, and the quaternary structure is linked to substrate affinity. T. brucei TK was primarily monomeric but can be considered a two-domain pseudodimer. Independent kinetic analysis of the two domains showed that only domain 2 was active. It had a similar turnover number (kcat) as the full-length enzyme but could not self-dimerize efficiently and had a 5-fold reduced thymidine/deoxyuridine affinity. Domain 1, which lacks three conserved active site residues, can therefore be considered a covalently attached structural partner that enhances substrate binding to domain 2. A consequence of the non-catalytic role of domain 1 is that its active site residues are released from evolutionary pressure, which can be advantageous for developing new catalytic functions. In addition, nearly identical 89-bp sequences present in both domains suggest that the exchange of genetic material between them can further promote evolution.  相似文献   
2.
CsgD and cyclic-3',5'-di-guanylate are key regulators of biofilm formation in Salmonella enterica serovar Typhimurium. Our results show that polynucleotide phosphorylase and NlpI oppositely altered expression of CsgD. Polynucleotide phosphorylase and NlpI also had opposite effects on the expression of yjcC, which codes for a cyclic-3',5'-di-guanylate phosphodiesterase affecting CsgD expression.  相似文献   
3.
Trypanosoma brucei is the causing agent of African trypanosomiasis. These parasites possess a unique thiol redox system required for DNA synthesis and defense against oxidative stress. It includes trypanothione and trypanothione reductase (TryR) instead of the thioredoxin and glutaredoxin systems of mammalian hosts. Here, we show that the benzisothiazolone compound ebsulfur (EbS), a sulfur analogue of ebselen, is a potent inhibitor of T. brucei growth with a favorable selectivity index over mammalian cells. EbS inhibited the TryR activity and decreased non-protein thiol levels in cultured parasites. The inhibition of TryR by EbS was irreversible and NADPH-dependent. EbS formed a complex with TryR and caused oxidation and inactivation of the enzyme. EbS was more toxic for T. brucei than for Trypanosoma cruzi, probably due to lower levels of TryR and trypanothione in T. brucei. Furthermore, inhibition of TryR produced high intracellular reactive oxygen species. Hydrogen peroxide, known to be constitutively high in T. brucei, enhanced the EbS inhibition of TryR. The elevation of reactive oxygen species production in parasites caused by EbS induced a programmed cell death. Soluble EbS analogues were synthesized and cured T. brucei brucei infection in mice when used together with nifurtimox. Altogether, EbS and EbS analogues disrupt the trypanothione system, hampering the defense against oxidative stress. Thus, EbS is a promising lead for development of drugs against African trypanosomiasis.  相似文献   
4.
5.
Ribonucleotide reductase (RNR) is a key enzyme for the synthesis of the four DNA building blocks. Class Ia RNRs contain two subunits, denoted R1 (alpha) and R2 (beta). These enzymes are regulated via two nucleotide-binding allosteric sites on the R1 subunit, termed the specificity and overall activity sites. The specificity site binds ATP, dATP, dTTP, or dGTP and determines the substrate to be reduced, whereas the overall activity site binds dATP (inhibitor) or ATP. By using gas-phase electrophoretic mobility macromolecule analysis and enzyme assays, we found that the Escherichia coli class Ia RNR formed an inhibited alpha(4)beta(4) complex in the presence of dATP and an active alpha(2)beta(2) complex in the presence of ATP (main substrate: CDP), dTTP (substrate: GDP) or dGTP (substrate: ADP). The R1-R2 interaction was 30-50 times stronger in the alpha(4)beta(4) complex than in the alpha(2)beta(2) complex, which was in equilibrium with free alpha(2) and beta(2) subunits. Studies of a known E. coli R1 mutant (H59A) showed that deficient dATP inhibition correlated with reduced ability to form alpha(4)beta(4) complexes. ATP could also induce the formation of a generally inhibited alpha(4)beta(4) complex in the E. coli RNR but only when used in combination with high concentrations of the specificity site effectors, dTTP/dGTP. Both allosteric sites are therefore important for alpha(4)beta(4) formation and overall activity regulation. The E. coli RNR differs from the mammalian enzyme, which is stimulated by ATP also in combination with dGTP/dTTP and forms active and inactive alpha(6)beta(2) complexes.  相似文献   
6.

Background

There is an urgent need to substitute the highly toxic compounds still in use for treatment of the encephalitic stage of human African trypanosomiasis (HAT). We here assessed the treatment with the doublet cordycepin and the deaminase inhibitor deoxycoformycin for this stage of infection with Trypanosoma brucei (T.b.).

Methodology/Principal Findings

Cordycepin was selected as the most efficient drug from a direct parasite viability screening of a compound library of nucleoside analogues. The minimal number of doses and concentrations of the drugs effective for treatment of T.b. brucei infections in mice were determined. Oral, intraperitoneal or subcutaneous administrations of the compounds were successful for treatment. The doublet was effective for treatment of late stage experimental infections with human pathogenic T.b. rhodesiense and T.b. gambiense isolates. Late stage infection treatment diminished the levels of inflammatory cytokines in brains of infected mice. Incubation with cordycepin resulted in programmed cell death followed by secondary necrosis of the parasites. T.b. brucei strains developed resistance to cordycepin after culture with increasing concentrations of the compound. However, cordycepin-resistant parasites showed diminished virulence and were not cross-resistant to other drugs used for treatment of HAT, i.e. pentamidine, suramin and melarsoprol. Although resistant parasites were mutated in the gene coding for P2 nucleoside adenosine transporter, P2 knockout trypanosomes showed no altered resistance to cordycepin, indicating that absence of the P2 transporter is not sufficient to render the trypanosomes resistant to the drug.

Conclusions/Significance

Altogether, our data strongly support testing of treatment with a combination of cordycepin and deoxycoformycin as an alternative for treatment of second-stage and/or melarsoprol-resistant HAT.  相似文献   
7.
African sleeping sickness is caused by Trypanosoma brucei. This extracellular parasite lacks de novo purine biosynthesis, and it is therefore dependent on exogenous purines such as adenosine that is taken up from the blood and other body fluids by high affinity transporters. The general belief is that adenosine needs to be cleaved to adenine inside the parasites in order to be used for purine nucleotide synthesis. We have found that T. brucei also can salvage this nucleoside by adenosine kinase (AK), which has a higher affinity to adenosine than the cleavage-dependent pathway. The recombinant T. brucei AK (TbAK) preferably used ATP or GTP to phosphorylate both natural and synthetic nucleosides in the following order of catalytic efficiencies: adenosine > cordycepin > deoxyadenosine > adenine arabinoside (Ara-A) > inosine > fludarabine (F-Ara-A). TbAK differed from the AK of the related intracellular parasite Leishmania donovani by having a high affinity to adenosine (K m = 0.04-0.08 microm depending on [phosphate]) and by being negatively regulated by adenosine (K i = 8-14 microm). These properties make the enzyme functionally related to the mammalian AKs, although a phylogenetic analysis grouped it together with the L. donovani enzyme. The combination of a high affinity AK and efficient adenosine transporters yields a strong salvage system in T. brucei, a potential Achilles' heel making the parasites more sensitive than mammalian cells to adenosine analogs such as Ara-A. Studies of wild-type and AK knockdown trypanosomes showed that Ara-A inhibited parasite proliferation and survival in an AK-dependent manner by affecting nucleotide levels and by inhibiting nucleic acid biosynthesis.  相似文献   
8.
Ribonucleotide reductase synthesizes deoxyribonucleotides, which are essential building blocks for DNA synthesis. The mammalian ribonucleotide reductase is described as an alpha(2)beta(2) complex consisting of R1 (alpha) and R2 (beta) proteins. ATP stimulates and dATP inhibits enzyme activity by binding to an allosteric site called the activity site on the R1 protein. Despite the opposite effects by ATP and dATP on enzyme activity, both nucleotides induce formation of R1 oligomers. By using a new technique termed Gas-phase Electrophoretic-Mobility Macromolecule Analysis (GEMMA), we have found that the ATP/dATP-induced R1 oligomers have a defined size (hexamers) and can interact with the R2 dimer to form an enzymatically active protein complex (alpha(6)beta(2)). The newly discovered alpha(6)beta(2) complex can either be in an active or an inhibited state depending on whether ATP or dATP is bound. Our results suggest that this protein complex is the major form of ribonucleotide reductase at physiological levels of R1-R2 protein and nucleotides.  相似文献   
9.
Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.  相似文献   
10.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) is critical for defense against intracellular pathogens but may mediate inflammatory tissue damage. To elucidate the role of iNOS in neuroinflammation, infections with encephalitogenic Trypanosoma brucei parasites were compared in inos -/- and wild-type mice. Inos -/- mice showed enhanced brain invasion by parasites and T cells, and elevated protein permeability of cerebral vessels, but similar parasitemia levels. Trypanosome infection stimulated T cell- and TNF-mediated iNOS expression in perivascular macrophages. NO nitrosylated and inactivated pro-inflammatory molecules such as NF-κΒp65, and reduced TNF expression and signalling. iNOS-derived NO hampered both TNF- and T cell-mediated parasite brain invasion. In inos -/- mice, TNF stimulated MMP, including MMP9 activity that increased cerebral vessel permeability. Thus, iNOS-generated NO by perivascular macrophages, strategically located at sites of leukocyte brain penetration, can serve as a negative feed-back regulator that prevents unlimited influx of inflammatory cells by restoring the integrity of the blood-brain barrier.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号