首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   6篇
  2012年   6篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1978年   1篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The transmembrane proteins MreC and MreD are present in a wide variety of bacteria and are thought to be involved in cell shape determination. Together with the actin homologue MreB and other morphological elements, they play an essential role in the synthesis of the lateral cell wall in rod-shaped bacteria. In ovococcus, which lack MreB homologues, mreCD are also essential and have been implicated in peripheral cell wall synthesis. In this work we addressed the possible roles of MreC and MreD in the spherical pathogen Staphylococcus aureus. We show that MreC and MreD are not essential for cell viability and do not seem to affect cell morphology, cell volume or cell cycle control. MreC and MreD localize preferentially to the division septa, but do not appear to influence peptidoglycan composition, nor the susceptibility to different antibiotics and to oxidative and osmotic stress agents. Our results suggest that the function of MreCD in S. aureus is not critical for cell division and cell shape determination.  相似文献   
6.
Vibrio (V.) parahaemolyticus is an aquatic halophilic bacteria which produces gastroenteritis and in rare cases septicaemia after the consumption of raw or under-cooked contaminated seafood.The severity of diarrheal illness caused by this bacterium is closely related to the presence of two types of hemolysins (the thermostable direct hemolysin-TDH and TDH related hemolysin-TRH) and also of type III secretion system (TTSS) proteins. The TTSS type 1 induces a wide array of effects on infected HeLa cells such as autophagy, oncosis, cell rounding and lysis. Previous studies have shown that heat shock proteins have the ability to stimulate the production of interleukins in different cellular cultures. In our studies we have stimulated two cellular lines (HeLa and human diploid cells) with different V. parahaemolyticus culture fractions in order to observe the effect on cytokines production. Thus, the purpose of this study was to analyze the expression of IL-1, IL-2, IL-4, IL-6, IL-10 and TNF-alpha induced by the cell treatment with total cellular lysate, periplasmic fractions and culture supernatants extracted from V. parahaemolyticus exposed to normal and also to stress conditions. The ELISA assay of the cytokine profile of the HeLa and HDC cell lines stimulated with different bacterial fractions revealed that in the V. parahemolyticus cultures submitted to osmotic and heat shock stress are accumulating factors (probably heat shock proteins) which are exhibiting immunomodulatory activity, responsible for the induction of a pro-inflammatory response associated with increased levels of IL-6 and TNF-alpha expression, however balanced by the stimulation of the anti-inflammatory cytokine IL-4 synthesis.  相似文献   
7.
8.
Sclerotinia trifoliorum causes clover cancer in red clover crops. Clover cancer is difficult to control and completely resistant red clover varieties are not available. Breeding for resistant red clover varieties is being slowed down because little is known about the diversity of European S. trifoliorum populations and because of the lack of bio-tests that are useable in breeding programs. The first objective of this research was to develop a reliable high-throughput bio-test, useable in breeding programs. The second objective was to optimise another bio-test, based on isolated leaves, for more precise studies. First, we optimised a method for ascospore production of S. trifoliorum. Once produced, the ascospores were used to evaluate the effects of climate conditions, ascospore concentration and plant age on the high-throughput bio-test. For the bio-test on isolated leaves, the effects of infection method, incubation conditions, incubation period, ascospore concentration, leaf growth stage and mechanical damage were evaluated. In the high-throughput bio-test, disease levels rose with increasing ascospore concentration up to 20,000 spores/ml. The plant age had a small, yet significant effect on the disease level. For the isolated leaf bio-test, the most effective and most repeatable infection method was spraying of an ascospore suspension. Disease levels continued to increase with rising concentrations and incubation time did not interact with plant susceptibility levels. The youngest completely opened leaf yielded the most repeatable results. Both bio-tests were shown to be correlated and could be valuable instruments for breeding programs and for studying plant-pathogen interactions.  相似文献   
9.
MreB proteins are bacterial actin homologs involved in cell morphogenesis and various other cellular processes. However, the effector proteins used by MreBs remain largely unknown. Bacillus subtilis has three MreB isoforms. Mbl and possibly MreB have previously been shown to be implicated in cell wall synthesis. We have now found that the third isoform, MreBH, colocalizes with the two other MreB isoforms in B. subtilis and also has an important role in cell morphogenesis. MreBH can physically interact with a cell wall hydrolase, LytE, and is required for its helical pattern of extracellular localization. Moreover, lytE and mreBH mutants exhibit similar cell-wall-related defects. We propose that controlled elongation of rod-shaped B. subtilis depends on the coordination of cell wall synthesis and hydrolysis in helical tracts defined by MreB proteins. Our data also suggest that physical interactions with intracellular actin bundles can influence the later localization pattern of extracellular effectors.  相似文献   
10.
The Bcr-Abl oncoprotein plays a major role in the development and progression of chronic myeloid leukemia and is a determinant of chemotherapy resistance occurring during the blast crisis phase of the disease. The aim of this article was to investigate the possibility of combating the resistance to apoptosis caused by Bcr-Abl by inducing an alternative cell death process. As a model of chronic myeloid leukemia, we employed Bcr-Abl-transfected mouse progenitor 32D cells with low and high Bcr-Abl expression levels corresponding to drug-sensitive and drug-resistant cells, respectively. The drug curcumin (diferuloylmethane), a known potent inducer of cell death in many cancer cells, was investigated for efficacy with Bcr-Abl-expressing cells. Curcumin strongly inhibited cell proliferation and affected cell viability by inducing apoptotic symptoms in all tested cells; however, apoptosis was a relatively late event. G(2)-M cell cycle arrest, together with increased mitotic index and cellular and nuclear morphology resembling those described for mitotic catastrophe, was observed and preceded caspase-3 activation and DNA fragmentation. Mitosis-arrested cells displayed abnormal chromatin organization, multipolar chromosome segregation, aberrant cytokinesis, and multinucleated cells-morphologic changes typical of mitotic catastrophe. We found that the mitotic cell death symptoms correlated with attenuated expression of survivin, a member of the chromosomal passenger complex, and mislocalization of Aurora B, the partner of survivin in the chromosomal passenger complex. Inhibition of survivin expression with small interfering RNA exhibited similar mitotic disturbances, thus implicating survivin as a major, albeit not the only, target for curcumin action. This study shows that curcumin can overcome the broad resistance to cell death caused by expression of Bcr-Abl and suggests that curcumin may be a promising agent for new combination regimens for drug-resistant chronic myeloid leukemia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号