首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2019年   1篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
排序方式: 共有5条查询结果,搜索用时 375 毫秒
1
1.
Studies of domestic animals are performed on breeds, but a breed does not necessarily equate to a genetically defined population. The division of sheep from three native and four modern Baltic sheep breeds was studied using 21 microsatellite loci and applying a Bayesian clustering method. A traditional breed-wise approach was compared to that relying on the pattern of molecular diversity. In this study, a breed was found to be inconsistent with a distinct genetic population for three reasons: (i) a lack of differentiation between modern Baltic breeds, since the majority of the studied sheep formed a single population; (ii) the presence of individuals of foreign ancestry within the breed; and (iii) an undefined local Saaremaa sheep was referred to as a breed, but was shown to consist of separate populations. In the breed-wise approach, only the clearly distinct Ruhnu sheep demonstrated low within-breed variation, although the newly identified Saaremaa populations also have low variability. Providing adequate management recommendations for the Saaremaa sheep is not possible without further studies, but the potential harmful effects of inbreeding in the Ruhnu sheep could be reduced through the use of two genetically related Saaremaa populations. In other breeds, excessive crossing appears to be a larger concern than inbreeding. Assigning individuals into populations based on the pattern of genetic diversity offers potentially unbiased means of elucidating the genetic population structure of species. Combining these genetic populations with phenotypic and aetiological data will enable formulation of the most informed recommendations for gene resource management.  相似文献   
2.
Population contribution to genetic diversity can be estimated using neutral variation. However, population expansion or hybridization of diverged ancestries may weaken correlation between neutral and non-neutral variation. Microsatellite variation was studied at 25 loci in 20 native and 12 modern or imported northern European sheep breeds. Breed contributions to total gene diversity, allelic richness and mean allele-sharing distance between individuals were measured. Indications of changes in population size and admixtures of divergent ancestries were investigated and the extent of inbreeding was estimated. The northern European sheep demonstrated signs of reduction in effective population size. Many old, small populations made a substantial positive contribution to total molecular variation, but populations with several divergent major ancestries did not contribute substantially to molecular variation, with the exception of the Norwegian Rygja sheep. However, several diverged major ancestries may cause it to contribute less to non-neutral variation than expected from the microsatellite data. Breed uniqueness and within-breed variability generally had opposite effects on breed contributions to molecular diversity. The degree of inbreeding did not reflect the breed contribution to total gene diversity or allelic richness, but inbred populations increased the mean allele-sharing distance between individuals. Our study indicates breed conservation to be especially important in maintaining allelic variation in northern European sheep and supports the evolutionary importance of peripheral populations.  相似文献   
3.
Quantitative trait loci (QTL) affecting clinical mastitis (CM) and somatic cell score (SCS) were mapped on bovine chromosome 11. The mapping population consisted of 14 grandsire families belonging to three Nordic red cattle breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB) and Danish Red. The families had previously been shown to segregate for udder health QTL. A total of 524 progeny tested bulls were included in the analysis. A linkage map including 33 microsatellite and five SNP markers was constructed. We performed combined linkage disequilibrium and linkage analysis (LDLA) using the whole data set. Further analyses were performed for FA and SRB separately to study the origin of the identified QTL/haplotype and to examine if it was common in both populations. Finally, different two-trait models were fitted. These postulated either a pleiotropic QTL affecting both traits; two linked QTL, each affecting one trait; or one QTL affecting a single trait. A QTL affecting CM was fine-mapped. In FA, a haplotype having a strong association with a high negative effect on mastitis resistance was identified. The mapping precision of an earlier detected SCS-QTL was not improved by the LDLA analysis because of lack of linkage disequilibrium between the markers used and the QTL in the region.  相似文献   
4.
Three distinct mitochondrial maternal lineages (haplotype Groups A, B, and C) have been found in the domestic sheep. Group B has been observed primarily in European domestic sheep. The European mouflon carries this haplotype group. This could suggest that European mouflon was independently domesticated in Europe, although archaeological evidence supports sheep domestication in the central part of the Fertile Crescent. To investigate this question, we sequenced a highly variable segment of mitochondrial DNA (mtDNA) in 406 unrelated animals from 48 breeds or local varieties. They originated from a wide area spanning northern Europe and the Balkans to the Altay Mountains in south Siberia. The sample included a representative cross-section of sheep breeds from areas close to the postulated Near Eastern domestication center and breeds from more distant northern areas. Four (A, B, C, and D) highly diverged sheep lineages were observed in Caucasus, 3 (A, B and C) in Central Asia, and 2 (A and B) in the eastern fringe of Europe, which included the area north and west of the Black Sea and the Ural Mountains. Only one example of Group D was detected. The other haplotype groups demonstrated signs of population expansion. Sequence variation within the lineages implied Group A to have expanded first. This group was the most frequent type only in Caucasian and Central Asian breeds. Expansion of Group C appeared most recently. The expansion of Group B involving Caucasian sheep took place at nearly the same time as the expansion of Group A. Group B expansion for the eastern European area started approximately 3,000 years after the earliest inferred expansion. An independent European domestication of sheep is unlikely. The distribution of Group A variation as well as other results are compatible with the Near East being the domestication site. Groups C and D may have been introgressed later into a domestic stock, but larger samples are needed to infer their geographical origin. The results suggest that some mitochondrial lineages arrived in northern Europe from the Near East across Russia.  相似文献   
5.
The maternal and paternal genetic variation of horse breeds from the Baltic Sea region, including three local Estonian breeds, was assessed and compared with that of Altai and Yakutian horses. In the mtDNA D‐loop region, 72 haplotypes assigned to 20 haplogroups in the nine breeds were detected. In Estonian local breeds, 38 mtDNA haplotypes were found, and five of them were shared by the three breeds. More than 60% of all identified haplotypes were rare. Compared with the Estonian Native and Estonian Heavy Draught breeds, a higher haplotypic diversity was found in the Tori breed (h = 0.969). Moreover, four haplotypes shared among Finnish and Estonian local horse breeds indicated ancient ancestry, and of these, H30 (haplogroup D3) showed global sharing and genetic links between modern Baltic Sea region and Siberian horses, specifically. The studied breed set showed high variability in maternal inheritance and mixed patterns of the international and native breeds of the Siberian and Baltic regions. No variation was found in paternally inherited markers among horse breeds in the Baltic Sea region.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号