首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   19篇
  2023年   6篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   13篇
  2017年   7篇
  2016年   17篇
  2015年   16篇
  2014年   15篇
  2013年   20篇
  2012年   25篇
  2011年   25篇
  2010年   17篇
  2009年   9篇
  2008年   7篇
  2007年   14篇
  2006年   7篇
  2005年   22篇
  2004年   9篇
  2003年   8篇
  2002年   6篇
  2001年   2篇
  1999年   3篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1975年   5篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   4篇
  1969年   1篇
  1968年   3篇
  1966年   1篇
  1965年   1篇
排序方式: 共有334条查询结果,搜索用时 15 毫秒
1.
2.
3.
Wastewaters are a rich source of nutrients for microorganisms. However, if left unattended the biodegradation may lead to severe environmental hazards. The wastewaters can thus be utilized for the production of various value added products including bioenergy (H2 and CH4). A number of studies have reported utilization of various wastewaters for energy production. Depending on the nature of the wastewater, different reactor configurations, wastewater and inoculum pretreatments, co-substrate utilizations along with other process parameters have been studied for efficient product formation. Only a few studies have reported sequential utilization of wastewaters for H2 and CH4 production despite its huge potential for complete waste degradation.  相似文献   
4.
Effect of chronic cadmium (Cd) exposure and the influence of diethyldithiocarbamate (DDC) on Cd absorption was studied on the brain of young male Wistar rats. A significant amount of Cd accumulated in cerebral cortices of rats after 4 weeks of Cd (6 mg/kg body wt) exposure (through gastric intubation). The biological activity of calmodulin (CaM) decreased significantly (p less than 0.001) in the cerebral cortices of these animals in comparison to the control group. 3'-5' Phosphodiesterase and synaptic membrane Ca(2+)-Mg(2+) ATPase were also significantly affected (p less than 0.01 and p less than 0.001 respectively). However, Cd treatment did not alter synaptic membrane adenylate cyclase activity and DDC (9.2 mg/kg body wt, intraperitoneal) treatment along with Cd (6 mg/kg body wt) enhanced Cd accumulation in cerebral cortices of treated animals resulting in an increased inhibition of CaM and CaM dependent enzymes. These data suggest that Cd may be acting via binding to CaM and uncoupling it from its normal cellular control of calcium.  相似文献   
5.
Long-term cultures of certain rat and mouse cell lines carry several dicentric and some multicentric chromosomes. Using antikinetochore antibodies obtainable from serum of scleroderma (var. CREST) patients we studied the number of kinetochores formed along the length of these chromosomes. The rat cells displayed as many kinetochores as there were centromeres. However, mouse cells showed the synthesis of only one kinetochore in dicentric and multicentric chromosomes which had been in the culture for a period of 1 year or more. When translocations were induced by bleomycin in mouse L cells, the newly formed dicentric chromosomes showed the formation of two kinetochores. It is not known when the accessory centromeres lose their capacity to assemble kinetochore proteins. Possibly, in the rat the latent kinetochores lack a specific component which renders them ineffective for microtubule binding. The reason for the formation of only one kinetochore in mouse multicentric chromosomes is not clear. It may be due to the accumulation of mutations, modification of the kinetochore protein so that it lacks the antibody binding component, or a more effective regulatory gene than in the rat.  相似文献   
6.
Benzyl 2-acetamido-2-deoxy-3-O-methyl-α-d-glucopyranoside (3) was obtained by deacetalation of its 4,6-O-benzylidene derivative (2). Compound 2 was prepared by methylation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside with methyl iodide-silver oxide in N,N-dimethylformamide. Diol 3 was selectively benzoylated and p-toluenesulfonylated, to give the 6-benzoic and 6-p-toluenesulfonic esters (4 and 5, respectively). Displacement of the sulfonyl group of 5 with sodium benzoxide in benzyl alcohol afforded the 6-O-benzyl derivative (6). Glycosylation of 4 with 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide (7) in dichloromethane, in the presence of 1,1,3,3-tetramethylurea, furnished the disaccharide derivative 8. Similar glycosylation of compound 6 with bromide 7 gave the disaccharide derivative 10. O-Deacetylation of 8 and 10 afforded disaccharides 9 and 11. The structure of compound 9 was established by 13C-n.m.r. spectroscopy. Hydrogenolysis of the benzyl groups of 11 furnished the disaccharide 2-acetamido-2-deoxy-4-O-β-d-galactopyranosyl-3-O-methyl-d-glucopyranose (N-acetyl-3-O-methyllactosamine).  相似文献   
7.
Much of the current cell technology has enabled increased antibody production levels due to judicious nutrient feeding to raise cell densities and design better bioreactors. This study demonstrates that hybridomas can be hyperstimulated to produce higher immunoglobulin (lg) levels by suppressing cell growth and increasing culture longevity through adaptation to higher osmolarity media and addition of sodium butyrate. Prior to adaptation, cells placed in higher osmotic pressures (350 and 400 mOsm) were severely suppressed in growth down to 25% of the control (300 mOsm), although total lg titers achieved were similar to the control, approximately 140 mg/L. After a week of adaptation to 350 and 400 mOsm media, cell growth was not as dramatically suppressed, but considerably higher lg levels were attained at these elevated osmolarities. The highest yield of 265 mg/L was obtained at 350 mOsm compared to 140 mg/L at 300 mOsm, while maximum viable cell numbers dropped from 35 x 10(5) cells/mL to 31 x 10(5) cells/mL and culture longevity was extended by 20 h more than the control. Sodium butyrate, known to enhance protein production in other cell types, was then supplemented at a range of concentrations between 0.01 and 0.4 mM to the 350 mOsm culture to further enhance the lg levels. Butyrate at a concentration of 0.1 mM, in combination with osmotic pressure at 350 mOsm, further elevated the lg levels to 350 mg/L. Concomitantly, maximum viable cell numbers were reduced to 22 x 10(5) cells/mL, but culture longevity was extended by 40 h in the 0.1 mM butyrate supplemented culture compared to the control condition. Specific antibody productivity, q(Mab), continued to stay high during the stationary phase and was further elevated during the decline phase: thus, overall lg levels can be increased by 2.3 times by combining osmotic pressure and butyrate treatment. (c) 1993 John Wiley & Sons, Inc.  相似文献   
8.
Drug-induced liver injury (DILI) is an adverse outcome of the currently used tuberculosis treatment regimen, which results in patient noncompliance, poor treatment outcomes, and the emergence of drug-resistant tuberculosis. DILI is primarily caused by the toxicity of the drugs and their metabolites, which affect liver cells, biliary epithelial cells, and liver vasculature. However, the precise mechanism behind the cellular damage attributable to first-line antitubercular drugs (ATDs), as well as the effect of toxicity on the cell survival strategies, is yet to be elucidated. In the current study, HepG2 cells upon treatment with a high concentration of ATDs showed increased perforation within the cell, cuboidal shape, and membrane blebbing as compared with control/untreated cells. It was observed that ATD-induced toxicity in HepG2 cells leads to altered mitochondrial membrane permeability, which was depicted by the decreased fluorescence intensity of the MitoRed tracker dye at higher drug concentrations. In addition, high doses of ATDs caused cell damage through an increase in reactive oxygen species production in HepG2 cells and a simultaneous reduction in glutathione levels. Further, high dose of isoniazid (50–200 mM), pyrazinamide (50–200 mM), and rifampicin (20–100 µM) causes cell apoptosis and affects cell survival during toxic conditions by decreasing the expression of potent autophagy markers Atg5, Atg7, and LC3B. Thus, ATD-mediated toxicity contributes to the reduced ability of hepatocytes to tolerate cellular damage caused by altered mitochondrial membrane permeability, increased apoptosis, and decreased autophagy. These findings further emphasize the need to develop adjuvant therapies that can mitigate ATD-induced toxicity for the effective treatment of tuberculosis.  相似文献   
9.
CD40 is a receptor with numerous functions in the activation of antigen presenting cells (APCs), particularly dendritic cells (DC). Using phage display technology, we identified linear peptides containing a novel FPGN/S consensus sequence that enhances the binding of phage to a purified murine CD40-immunoglobulin (Ig) fusion protein (CD40-Ig), but not to Ig alone. To examine the ability the FPGN/S peptides to enhance adenoviral infection of CD40-positive cells, we used bifunctional peptides consisting of an FPGN-containing peptide covalently linked to an adenoviral knob-binding peptide (KBP). One of these, FPGN2-KBP, was able to enhance adenoviral infection of both murine and human DCs in a dose-dependent manner. FPGN2-KBP also improved infection of murine B cell blasts, a murine B lymphoma cell line (L10A), and immortalized human B cells. To demonstrate that enhancement of adenoviral infection depended on the presence of CD40, we analyzed infection of the breast cancer line, SKBR3, that does not express CD40 or the adenovirus cellular receptor, CAR. Infection of SKBR3 cells was enhanced by FPGN2-KBP following transient transfection with a plasmid vector that expresses murine CD40, but not when the cells were mock-transfected. In conclusion, we have isolated a peptide that binds to murine CD40, and promotes the uptake of adenoviruses into CD40-expressing cells of both murine and human origin, suggesting that it may have potential applications for antigen delivery to CD40-positive antigen-presenting cells.  相似文献   
10.
Enzymatic 3-O-sulfation of terminal ß-Gal residueswas investigated by screening sulfotransferase activity presentin 37 human tissue specimens toward the following synthesizedacceptor moieties: Galß1,3GalNAc-O-Al, Galß1,4GlcNAcß-O-Al,Galß1,3GlcNAcß-O-Al, and mucin-type Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnstructures containing a C-3 methyl substituent on either Gal.Two distinct types of Gal: 3-O-sulfotransferases were revealed.One (Group A) was specific for the Galß1, 3GalNAc-linkage and the other (Group B) was directed toward the Galß1,4GlcNAcbranch ß1,6 linked to the blood group T hapten. Enzymeactivities found in breast tissues were unique in showing astrict specificity for the T-hapten. Galß-O-allylor benzyl did not serve as acceptors for Group A but were veryactive with Group B. An exainination of activity present insix human sera revealed a specificity of the serum enzyme towardß1,3 linked Gal, particularly, the T-hapten withoutß1,6 branching. Group A was highly active toward T-haptenlacrylamidecopolymer, anti-freeze glycoprotein, and fetuin O-glycosidicasialo glycopeptide; less active toward fetuin triantennaryasialo glycopeptide; and least active toward bovine IgG diantennaryglycopeptide. Group B was moderately and highly active, respectively,with the latter two glycopeptides noted and least active withthe first two. Competition experiments performed with Galß1,3GaLNAc-O-Aland Galß1,4GlcNAcß1,6(Galß1,3)GalNAc-O-Bnhaving a C-3 substituent (methyl or sulfate) on either Gal reinforcedearlier findings on the specificity characteristics of GroupA and Group B. Group A displayed a wider range of optimal activity(pH 6.0–7.4), whereas Group B possessed a peak of activityat pH 7.2. Mg2+ stimulated Group A 55% and Group B 150%, whereasMn+2 stimulated Group B 130% but inhibited Group A 75%. Ca2+stimulated Group B 100% but inhibited Group A 35%. Group A andGroup B enzymes appeared to be of the same molecular size (<100,000Da) as observed by Sephacryl S-100 HR column chromatography.The following effects upon Gal: 3-O- sulfotransferase activitiesby fucose, sulfate, and other substituents on the carbohydratechains were noted. (1) A methyl or GlcNAc substituent on C-6of GalNAc diminished the ability of Galß1,3GalNAc-O-Alto act as an acceptor for Group A. (2) An 1,3-fucosyl residueon the ß1,6 branch in the mucin core structure didnot affect the activity of Group A toward Gal linked ß1,3to GalNAc-. (3) Lewis x and Lewis a terminals did not serveas acceptors for either Group A or B enzymes. (4) Eliminationof Group B activity on Gal in the ß1,6 branch owingto the presence of a 3-fucosyl or 6-sulfo group on GlcNAc didnot hinder any action toward Gal linked ß1,3 to GalNAc.(5) Group A activity on Gal linked ß1,3 to GalNAcremained imaffected by 3'-sulfation of the ß1,6 branch.The reverse was true for Group B. (6) The acceptor activityof the T-hapten was increased somewhat upon C-6 sulfation ofGalNAc, whereas, C-6 slalylation resulted in an 85% loss ofactivity. (7) A novel finding was that Galß1,4GlcNAcß-O-Aland Galß1,3GlcNAcß-O-M, upon C-6 sulfationof the GlcNAc moiety, became 100% inactive and 5- to 7-foldactive, respectively, in their ability to serve as acceptorsfor Group B. human tissues glycoprotein galactose:sulfotransferase specificities kinetic properties  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号