首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   41篇
  417篇
  2023年   4篇
  2022年   7篇
  2021年   9篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   7篇
  2016年   7篇
  2015年   15篇
  2014年   22篇
  2013年   20篇
  2012年   28篇
  2011年   52篇
  2010年   25篇
  2009年   22篇
  2008年   22篇
  2007年   24篇
  2006年   18篇
  2005年   22篇
  2004年   12篇
  2003年   20篇
  2002年   15篇
  2001年   3篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1980年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1968年   7篇
  1967年   1篇
  1965年   1篇
  1964年   4篇
排序方式: 共有417条查询结果,搜索用时 0 毫秒
1.
Cell kinetic studies of endothelial cells in the adenocarcinoma EO 771 growing in C57bl/6j mice and after transplantation into Balb/c-nu/nu mice, as well as of the effect of cyclophosphamide treatment have been carried out. The3H-thymidine labelling index of endothelial cells decreases from about 8% 3–6 days after tumour inoculation to about 3% at 18 days. This decrease parallels that of the labelling index of tumour cells, i.e. there is a positive correlation between the labelling index of endothelial cells and that of tumour cells. The labelling index of endothelial cells in the tumour periphery is two to three times as high as that in the tumour centre reflecting corresponding differences in the rate of proliferation. There is no difference in the proliferation of endothelial cells whether the tumour grows in C57bl/6j or in Balb/c-nu/nu mice. After treatment with cyclophosphamide the labelling index of endothelial cells decreases within 2 days to 1–2% and remains that low despite regrowth of the tumour with increased tumour cell proliferation, indicating that tumour relapse does not depend on tumour angiogenesis.  相似文献   
2.
Recently an inherited vitamin G deficiency in the pigs presumably based on an autosomal recessive gene was decribed* Homozygotes are in contrast to heterozygotes and normal pigs unable to synthesize ascorbic acid. In an experiment comprising 3 littermate pigs, 2 homozygous and 1 heterozygous for the vitamin C deficiency gene, the influence of ascorbic acid depletion, and repletion on mitogen stimulation of peripheral blood lymphocytes was studied. Ascorbic acid depletion of the vitamin C dependent pigs resulted in a rapid decline in plasma ascorbic acid. Response of lymphocytes to stimular tion with Concanavalin A (Con A) and phytohemagglutinin M (PHA) decreased more slowly reaching a minimum, which coincidedi with the occurrence of the first clinical symptoms of scurvy. Following resupplementation with vitamin C the plasma content of ascorbic acid rapidly returned to normal, while the lymphocyte response to Con A and PHA stimulation only gradually approached the initial values. The repletion with ascorbic acid caused a transitory increase in the response to pokeweed mitogen (PWM) stimulation. The significance of these findings in relation to the cellular immune system in normal pigs is discussed.  相似文献   
3.
4.
The ability to design customized proteins to perform specific tasks is of great interest. We are particularly interested in the design of sensitive and specific small molecule ligand-binding proteins for biotechnological or biomedical applications. Computational methods can narrow down the immense combinatorial space to find the best solution and thus provide starting points for experimental procedures. However, success rates strongly depend on accurate modeling and energetic evaluation. Not only intra- but also intermolecular interactions have to be considered. To address this problem, we developed PocketOptimizer, a modular computational protein design pipeline, that predicts mutations in the binding pockets of proteins to increase affinity for a specific ligand. Its modularity enables users to compare different combinations of force fields, rotamer libraries, and scoring functions. Here, we present a much-improved version––PocketOptimizer 2.0. We implemented a cleaner user interface, an extended architecture with more supported tools, such as force fields and scoring functions, a backbone-dependent rotamer library, as well as different improvements in the underlying algorithms. Version 2.0 was tested against a benchmark of design cases and assessed in comparison to the first version. Our results show how newly implemented features such as the new rotamer library can lead to improved prediction accuracy. Therefore, we believe that PocketOptimizer 2.0, with its many new and improved functionalities, provides a robust and versatile environment for the design of small molecule-binding pockets in proteins. It is widely applicable and extendible due to its modular framework. PocketOptimizer 2.0 can be downloaded at https://github.com/Hoecker-Lab/pocketoptimizer .  相似文献   
5.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
6.
A comparison was made of (NH4)2SO4, HCl, ethodin, and ethanol for fractionation of rabbit antiserum prior to conjugation with fluorescein isothiocyanate. Fractionation with the salt was found to be the method of choice from the standpoints of simplicity and recovery of antibody effective in conjugates prepared from the fractions. Effects of pH, temperature, dye-protein ratio, and molarity and type of buffer upon conjugation were studied. These technical factors were adjusted to produce conjugates for Corynebacterium diphtheriae which possessed higher specific titers than did reagents obtained by previously employed techniques.  相似文献   
7.
8.
Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range.  相似文献   
9.
Seebeck B  Reulecke I  Kämper A  Rarey M 《Proteins》2008,71(3):1237-1254
The accurate modeling of metal coordination geometries plays an important role for structure-based drug design applied to metalloenzymes. For the development of a new metal interaction model, we perform a statistical analysis of metal interaction geometries that are relevant to protein-ligand complexes. A total of 43,061 metal sites of the Protein Data Bank (PDB), containing amongst others magnesium, calcium, zinc, iron, manganese, copper, cadmium, cobalt, and nickel, were evaluated according to their metal coordination geometry. Based on statistical analysis, we derived a model for the automatic calculation and definition of metal interaction geometries for the purpose of molecular docking analyses. It includes the identification of the metal-coordinating ligands, the calculation of the coordination geometry and the superposition of ideal polyhedra to identify the optimal positions for free coordination sites. The new interaction model was integrated in the docking software FlexX and evaluated on a data set of 103 metalloprotein-ligand complexes, which were extracted from the PDB. In a first step, the quality of the automatic calculation of the metal coordination geometry was analyzed. In 74% of the cases, the correct prediction of the coordination geometry could be determined on the basis of the protein structure alone. Secondly, the new metal interaction model was tested in terms of predicting protein-ligand complexes. In the majority of test cases, the new interaction model resulted in an improved docking accuracy of the top ranking placements.  相似文献   
10.
The ability to construct novel enzymes is a major aim in de novo protein design. A popular enzyme fold for design attempts is the TIM barrel. This fold is a common topology for enzymes and can harbor many diverse reactions. The recent de novo design of a four‐fold symmetric TIM barrel provides a well understood minimal scaffold for potential enzyme designs. Here we explore opportunities to extend and diversify this scaffold by adding a short de novo helix on top of the barrel. Due to the size of the protein, we developed a design pipeline based on computational ab initio folding that solves a less complex sub‐problem focused around the helix and its vicinity and adapt it to the entire protein. We provide biochemical characterization and a high‐resolution X‐ray structure for one variant and compare it to our design model. The successful extension of this robust TIM‐barrel scaffold opens opportunities to diversify it towards more pocket like arrangements and as such can be considered a building block for future design of binding or catalytic sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号