首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2012年   3篇
  2008年   1篇
  2007年   1篇
  2005年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1990年   2篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
Molecular Biology Reports - H2O2 generated during the oxidative burst, plays important roles in plant defenses responses against pathogens. In this study we examined the role of H2O2 on bacterial...  相似文献   
2.
3.
The biotrophic oomycete Plasmopara halstedii is the causal agent of downy mildew in sunflower. It penetrates the roots of both susceptible and resistant sunflower lines and grows through the hypocotyls towards the upper part of the seedling. RT-PCR analysis has shown that resistance is associated with the activation of a hsr203J-like gene, which is a molecular marker of the hypersensitive reaction in tobacco. Activation of this gene was specifically observed during the incompatible interaction and coincided with cell collapse in the hypocotyls. This HR was also associated with the early and local activation of the NPR1 gene which is a key component in the establishment of the SAR. No such HR or a significant activation of the hsr203J-like gene were observed during the compatible combination. These results suggest that the resistance of sunflower to P. halstedii is associated with an HR which fails to halt the parasite. By contrast, this HR triggers a SAR which takes places in the upper part of the hypocotyls and eventually leads to the arrest of parasite growth. A model describing the resistance of plants to root-infecting oomycetes is proposed.  相似文献   
4.
Malnoy M  Venisse JS  Reynoird JP  Chevreau E 《Planta》2003,216(5):802-814
In order to improve pear resistance against fire blight caused by Erwinia amylovora, a search for promoters driving high-level expression of transgenes specifically in response to this bacterial pathogen has been undertaken. We have examined the ability of hsr203J, str246C and sgd24 tobacco (Nicotiana tabacum L.) promoters to drive expression of the uidA reporter gene in pear. Transgenic pear clones were obtained by Agrobacterium tumefaciens-mediated transformation. Beta-glucuronidase activity was determined quantitatively and qualitatively in these plants grown in vitro using fluorometric and histochemical assays and compared to cauliflower mosaic virus (CaMV) 35S promoter-driven activity. The hsr203J promoter appeared to be very weakly activated following inoculation in pear, which is the converse of the situation in tobacco. The str246C promoter was rapidly activated in pear during compatible and incompatible interactions, by wounding and following the application of several elicitors (capsicein, cryptogein, harpin, salicylic acid and jasmonic acid). The sgd24 promoter, a deletion derivative of str246C, exhibited a low level of expression after bacterial inoculation, was weakly activated by wounding and elicitors, and was not activated by phytohormones (salicylic acid and jasmonic acid). Interestingly, the sgd24 promoter was locally activated in pear, whereas the str246C promoter was activated systemically from the infection site. Taken together, these data show that, although the s tr246C and sgd24 promoters are less active than the CaMV35S promoter in pear, their pathogen-responsiveness would permit them to be used to drive the expression of transgenes to promote bacterial disease resistance.  相似文献   
5.
6.
Climate change is expected to increase drought frequency and intensity which will threaten plant growth and survival. In such fluctuating environments, perennial plants respond with hydraulic and biomass adjustments, resulting in either tolerant or avoidant strategies. Plants' response to stress relies on their phenotypic plasticity. The goal of this study was to explore physiology of young Populus nigra in the context of a time‐limited and progressive water deficit in regard to their growth and stress response strategies. Fourteen French 1‐year‐old black poplar genotypes, geographically contrasted, were subjected to withholding water during 8 days until severe water stress. Water fluxes (i.e. leaf water potentials and stomatal conductance) were analyzed together with growth (i.e. radial and longitudinal branch growth, leaf senescence and leaf production). Phenotypic plasticity was calculated for each trait and response strategies to drought were deciphered for each genotype. Black poplar genotypes permanently were dealing with a continuum of adjusted water fluxes and growth between two extreme strategies, tolerance and avoidance. Branch growth, leaf number and leaf hydraulic potential traits had contrasted plasticities, allowing genotype characterization. The most tolerant genotype to water deficit, which maintained growth, had the lowest global phenotypic plasticity. Conversely, the most sensitive and avoidant genotype ceased growth until the season's end, had the highest plasticity level. All the remaining black poplar genotypes were close to avoidance with average levels of traits plasticity. These results underpinned the role of plasticity in black poplar response to drought and calls for its wider use into research on plants' responses to stress.  相似文献   
7.
A novel category of major intrinsic proteins which share weak similarities with previously identified aquaporin subfamilies was recently identified in land plants, and named X (for unrecognized) intrinsic proteins (XIPs). Because XIPs are still ranked as uncharacterized proteins, their further molecular characterization is required. Herein, a systematic fine-scale analysis of XIP sequences found in flowering plant databases revealed that XIPs are found in at least five groups. The phylogenetic relationship of these five groups with the phylogenetic organization of angiosperms revealed an original pattern of evolution for the XIP subfamily through distinct angiosperm taxon-specific clades. Of all flowering plant having XIPs, the genus Populus encompasses the broadest panel and the highest polymorphism of XIP isoforms, with nine PtXIP sequences distributed within three XIP groups. Comprehensive PtXIP gene expression patterns showed that only two isoforms (PtXIP2;1 and PtXIP3;2) were transcribed in vegetative tissues. However, their patterns are contrasted, PtXIP2;1 was ubiquitously accumulated whereas PtXIP3;2 was predominantly detected in wood and to a lesser extent in roots. Furthermore, only PtXIP2;1 exhibited a differential expression in leaves and stems of drought-, salicylic acid-, or wounding-challenged plants. Unexpectedly, the PtXIPs displayed different abilities to alter water transport upon expression in Xenopus laevis oocytes. PtXIP2;1 and PtXIP3;3 transported water while other PtXIPs did not.  相似文献   
8.
Mycobacterial species-specific antigens belong to the three following classes: phenolic glycolipids (Phe Gl), acyltrehalose-containing lipooligosaccharides and polar glycopeptidolipids. These antigens have been chemically defined and alkali-labile epitopes were found to characterize the lipooligosaccharide antigen type. In the present study the major Mycobacterium kansasii phenolic glycolipid epitope namely Phe Gl K-I was delineated as the distal monoacetylated disaccharidic residue: 2,6-dideoxy-4-O-methyl-alpha-D-arabino-hexopyranosyl-(1----3)-2-O-methyl -4-O- acetyl-alpha-L-fucopyranose. This acetoxy group is required for K-I epitope recognition demonstrating that alkali-labile epitopes also occur in the phenolic glycolipid antigen class. Using immunoelectron microscopy, the Phe Gl K-I epitope was localized around the electron-transparent layer on the M. kansasii cell-wall surface. Furthermore, two new phenolic glycolipids namely Phe Gl K-III and Phe Gl K-IV were discovered in minute amounts. They were purified and characterized by their retention time in direct-phase column HPLC. These molecules are also M. kansasii antigens, whose epitopes differ from that of Phe Gl K-I. The complete family of phenolic glycolipids Phe Gl K-I, K-II, K-III and K-IV was found in both rough and smooth variants of both M. kansasii and Mycobacterium gastri species.  相似文献   
9.
The siderophore produced by Erwinia amylovora, the causal agent of fire blight of Maloideae, is one of the virulence factors of this bacterium. The production of siderophores enables E. amylovora to overcome the conditions of iron limitation met in plant tissue, and may also protect the bacteria against active oxygen species produced through the Fenton reaction. In this paper, we have examined the ability of an iron chelator protein, encoded by the bovine lactoferrin gene, to reduce fire blight susceptibility in pear (Pyrus communis L.). Transgenic pear clones expressing this gene controlled by the CaMV35S promoter were produced by Agrobacterium tumefaciens mediated transformation. Transformants were analysed by RT-PCR and western blot to determine lactoferrin expression levels. Most transgenic clones demonstrated significant reduction of susceptibility to fire blight in vitro and in the greenhouse when inoculated by E. amylovora. These transgenic clones also showed a significant reduction of symptoms when inoculated with two other pear bacterial pathogens : Pseudomonas syringae pv. syringae and Agrobacterium tumefaciens. Moreover, we have shown that this increase in bacterial resistance was correlated with an increase in root ferric reductase level activity and leaf iron content. Despite negative effects on the growth of a few clones, our results indicate the potential of lactoferrin gene transformation to protect pear from fire blight through increased iron chelation.  相似文献   
10.
A new liquid chromatography assay with isocratic elution and tandem mass spectrometry detection (LC-MS/MS) using an electrospray ionization interface in the multiple reaction monitoring mode was developed and validated for ertapenem determination in microdialysate samples. Linearity was demonstrated between 10ngmL(-1) (lower limit of quantification, LLoQ) and 160ngmL(-1). The precision (CV%) and accuracy (bias%) in microdialysates at the LLoQ were respectively 2.2% and 17.3% within-day and 10.6% and 2.7% between-days. Ertapenem was stable for 1 month at -20 degrees C and -80 degrees C but unstable at +4 degrees C. This new LC-MS/MS assay is simple, rapid and more sensitive than previously described assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号