首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2014年   1篇
  2012年   2篇
  2007年   1篇
  2003年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
The mainly fresh water arboviral vector Aedes aegypti L. (Diptera: Culicidae) can also undergo pre-imaginal development in brackish water of up to 15 ppt (parts per thousand) salt in coastal areas. We investigated differences in salinity tolerance, egg laying preference, egg hatching and larval development times and resistance to common insecticides in Ae. aegypti collected from brackish and fresh water habitats in Jaffna, Sri Lanka. Brackish water-derived Ae. aegypti were more tolerant of salinity than fresh water-derived Ae. aegypti and this difference was only partly reduced after their transfer to fresh water for up to five generations. Brackish water-derived Ae. aegypti did not significantly discriminate between 10 ppt salt brackish water and fresh water for oviposition, while fresh water-derived Ae. aegypti preferred fresh water. The hatching of eggs from both brackish and fresh water-derived Ae. aegypti was less efficient and the time taken for larvae to develop into pupae was prolonged in 10 ppt salt brackish water. Ae. aegypti isolated from coastal brackish water were less resistant to the organophosphate insecticide malathion than inland fresh water Ae. aegypti. Brackish and fresh water-derived Ae. aegypti however were able to mate and produce viable offspring in the laboratory. The results suggest that development in brackish water is characterised by pertinent biological changes, and that there is restricted genetic exchange between coastal brackish and inland fresh water Ae. aegypti isolates from sites 5 km apart. The findings highlight the need for monitoring Ae. aegypti developing in coastal brackish waters and extending vector control measures to their habitats.  相似文献   
2.
Many temperate green macroalgae contain secondary meatbolites that provide protection from grazing by some herbivores. These include the production of dopamine hydrochloride by the ulvoid green alga Ulvaria obscura and the production of dimethylsulfoniopropionate (DMSP) by many species of Ulvales and Caulerpales. The dopamine hydrochloride defense was isolated using bioassay-guided fractionation and is effective against sea urchins ( Strongylocentrotus droebachiensis ) and littorinid snails ( Littorina sitkana ). The DMSP activated defense system involves enzymatic cleavage of DMSP into dimethyl sulfide (DMS) and acrylic acid. It is found in many of the Ulvales and several species of Codium in the northeastern Pacific and Australasian regions. Many green algae such as Ulva fenestrata and Enteromorpha linza are avoided by urchins, which are deterred by DMS and acrylic acid in laboratory assays. However, these algae are often preferred foods of snails, which are deterred by DMS and acrylic acid. Snails may preferentially consume ulvoid green algae, despite being deterred by DMS and acrylic acid, because these algae contain relatively high nitrogen concentrations.  相似文献   
3.
Epstein-Barr virus (EBV) causes hairy leukoplakia (HL), a benign lesion of oral epithelium that occurs primarily in the setting of human immunodeficiency virus (HIV)-associated immunodeficiency. However, the mechanisms of EBV infection of oral epithelium are poorly understood. Analysis of HL tissues shows a small number of EBV-positive intraepithelial macrophages and dendritic/Langerhans cells. To investigate a role for these cells in spreading EBV to epithelial cells, we used tongue and buccal explants infected ex vivo with EBV. We showed that EBV first infects submucosal CD14(+) monocytes, which then migrate into the epithelium and spread virus to oral epithelial cells, initiating productive viral infection within the terminally differentiated spinosum and granulosum layers. Incubation of EBV-infected monocytes and oral explants with antibodies to CCR2 receptor and monocyte chemotactic protein 1 prevented entry of monocytes into the epithelium and inhibited EBV infection of keratinocytes. B lymphocytes played little part in the spread of EBV to keratinocytes in our explant model. However, cocultivation of EBV-infected B lymphocytes with uninfected monocytes in vitro showed that EBV may spread from B lymphocytes to monocytes. Circulating EBV-positive monocytes were detected in most HIV-infected individuals, consistent with a model in which EBV may be spread from B lymphocytes to monocytes, which then enter the epithelium and initiate productive viral infection of keratinocytes.  相似文献   
4.
While human immunodeficiency virus (HIV) transmission through the adult oral route is rare, mother-to-child transmission (MTCT) through the neonatal/infant oral and/or gastrointestinal route is common. To study the mechanisms of cell-free and cell-associated HIV transmission across adult oral and neonatal/infant oral/intestinal epithelia, we established ex vivo organ tissue model systems of adult and fetal origin. Given the similarity of neonatal and fetal oral epithelia with respect to epithelial stratification and density of HIV-susceptible immune cells, we used fetal oral the epithelium as a model for neonatal/infant oral epithelium. We found that cell-free HIV traversed fetal oral and intestinal epithelia and infected HIV-susceptible CD4(+) T lymphocytes, Langerhans/dendritic cells, and macrophages. To study the penetration of cell-associated virus into fetal oral and intestinal epithelia, HIV-infected macrophages and lymphocytes were added to the surfaces of fetal oral and intestinal epithelia. HIV-infected macrophages, but not lymphocytes, transmigrated across fetal oral epithelia. HIV-infected macrophages and, to a lesser extent, lymphocytes transmigrated across fetal intestinal epithelia. In contrast to the fetal oral/intestinal epithelia, cell-free HIV transmigration through adult oral epithelia was inefficient and virions did not infect intraepithelial and subepithelial HIV-susceptible cells. In addition, HIV-infected macrophages and lymphocytes did not transmigrate through intact adult oral epithelia. Transmigration of cell-free and cell-associated HIV across the fetal oral/intestinal mucosal epithelium may serve as an initial mechanism for HIV MTCT.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号