首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2000年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1963年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with dl-α-difluoromethylarginine (DFMA), a specific `suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.  相似文献   
2.
We studied the effects of various polyamines on bud regeneration in thin-layer tissue explants of vegetative and floweringNicotiana tabacum L. cv. Wisconsin 38, in which application of exogenous spermidine (Spd) to vegetative cultures causes the initiation and development of some flower buds (Kaur-Sawhney et al. 1988 Planta173, 282). We now show that this effect is dependent on the time and duration of application, Spd being required from the start of the cultures for about three weeks. Neither putrescine nor spermine is effective in the concentration range tested. Spermidine cannot replace kinetin (N6-furfurylaminopurine) in cultures at the time of floral bud formation, but once the buds are initiated in the presence of kinetin, addition of Spd to the medium greatly increases the number of floral buds that develop into normal flowers. Addition of Spd to similar cultures derived from young, non-flowering plants did not cause the appearance of floral buds but rather induced a profusion of vegetative buds. These results indicate a morphogenetic role of Spd in bud differentiation. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   
3.
Thin longitudinal sections cut from pedicels of fifteen cultivars of tomato (Lycopersicon esculentum) were grown in vitro on Murashige-Skoog medium supplemented with various concentrations of different auxins and cytokinins. Isatin (an auxin precursor slowly converted to an active auxin) was the most effective source of auxin for the formation of buds without prior root formation, while zeatin was the most effective cytokinin for growth and development of the buds. Flower buds and ripe fruits developed consistently from explants of the cultivar Pixie Hybrid II treated with 10 M isatin plus 3 M zeatin as the cytokinin. Fruits developed parthenocarpically, grew to a diameter of about 15 mm, ripened promptly, and possessed normal color and flavor.Abbreviations BAP benzylaminopurine - IAA indole-3-acetic acid - IBA indole-3-butyric acid - IPA isopentyladenosine - NAA -napthaleneacetic acid  相似文献   
4.
Protoplasts obtained from oat leaves floated on buffer for 18hr show high nuclease activity, low rates of incorporation ofamino acids and nucleosides into macromolecules, and high ratesof spontaneous lysis. Addition to the leaf flotation mediumof the senescence retardants cycloheximide or kinetin, of thedibasic amino acids L-lysine or L-arginine, or of the diaminesputrescine or cadaverine reduces the rise in nuclease activityand spontaneous lysis of protoplasts, and increases the rateor extent of presumptive protein and nucleic acid synthesis.The diamines, which also retard chlorophyll degradation in theexcised leaves, appear to act both on the membrane and on systemscontrolling macromolecular synthesis and breakdown. By contrast,the senescence promoter L-serine hastens chlorophyll degradationfrom excised leaves and does not improve protoplasts derivedfrom those leaves. (Received July 4, 1977; )  相似文献   
5.
Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.  相似文献   
6.
7.
8.
9.
Inhibition of sodium-dependent glucose transporter 2 (SGLT2), the transporter that is responsible for renal re-uptake of glucose, leads to glucosuria in animals. SGLT-mediated glucosuria provides a mechanism to shed excess plasma glucose to ameliorate diabetes-related hyperglycemia and associated complications. The current study demonstrates that the proper relationship of a 4′-substituted benzyl group to a β-1C-phenylglucoside is important for potent and selective SGLT2 inhibition. The lead C-arylglucoside (7a) demonstrates superior metabolic stability to its O-arylglucoside counterpart (4) and it promotes glucosuria when administered in vivo.  相似文献   
10.
Alzheimer's disease (AD) is clinically characterized by the aggregation of neurotoxic amyloid-β (Aβ) peptides in the brain. γ-Secretase catalyzes the reaction of Aβ formation. Inhibition of γ-secretase activating protein (GSAP) reduces Aβ production without disrupting other molecular functions and serves as a promising therapeutic target for lowering Aβ and curing AD. Till date, no proven drug is available for curing AD because of the nonexistence of crystal/NMR structure of GSAP. Thus in the present study, for the first time, we adopted in silico method to predict the 3D structure of GSAP via comparative modeling and studied the architecture and function of GSAP through simulation studies. Docking studies with 4153 phytochemicals revealed that GSAP having a better binding affinity with macaflavanone C, (E)-1-[2,4-dihydroxy-3-(3-methylbut-2-enyl)phenyl]-3-(2,2-dimethyl-8-hydroxy-2H-benzopyran-6-yl)prop-2-en-1-one, and monachosorin B as compared with the standard drug, imatinib. Further, the molecular dynamics analysis suggested that only two phytochemicals, namely, macaflavanone C and (E)-1-[2,4-dihydroxy-3-(3-methylbut-2-enyl)phenyl]-3-(2,2-dimethyl-8-hydroxy-2H-benzopyran-6-yl)prop-2-en-1-one) significantly disrupt the original property of GSAP and also cleared the absorption, distribution, metabolism, and excretion test. These natural compounds may be utilized in future for curing AD after further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号