首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   12篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   11篇
  2011年   6篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
  1987年   4篇
  1985年   2篇
  1983年   2篇
  1976年   1篇
排序方式: 共有119条查询结果,搜索用时 312 毫秒
1.
Inverted repeats in the DNA of plasmid pCU1   总被引:3,自引:3,他引:0       下载免费PDF全文
Renaturable regions in the DNA strands of the N group plasmid pCU1 have been visualized as stem-loop structures by electron microscopy. Four such distinct structures are described, the smallest of which is within the loop of a larger one. The region of pCU1 in which these structures occur has several restriction sites. This and the availability of plasmid deletions and recombinants has permitted the mapping of these structures relative to one another and to the restriction and functional map of the plasmid. The replication and maintenance region of the plasmid is located within one of these stem-loop structures.  相似文献   
2.
Band 4.2 is a human erythrocyte membrane protein of incompletely characterized structure and function. Erythrocytes deficient in band 4.2 protein were used to examine the functional role of band 4.2 in intact erythrocyte membranes. Both the lateral and the rotational mobilities of band 3 were increased in band 4.2-deficient erythrocytes compared to control cells. In contrast, the lateral mobility of neither glycophorins nor a fluorescent phospholipid analog was altered in band 4.2-deficient cells. Compared to controls, band 4.2-deficient erythrocytes manifested a decreased ratio of band 3 to spectrin, and band 4.2-deficient membrane skeletons had decreased extractability of band 3 under low-salt conditions. Normal band 4.2 was found to bind to spectrin in solution and to promote the binding of spectrin to ankyrin-stripped inside-out vesicles. We conclude that band 4.2 provides low-affinity binding sites for both band 3 oligomers and spectrin dimers on the human erythrocyte membrane. Band 4.2 may serve as an accessory linking protein between the membrane skeleton and the overlying lipid bilayer.  相似文献   
3.
We used quantitative fluorescence microscopy and fluorescence photobleaching recovery techniques to investigate the translational movement, cell surface expression, and endocytosis of transferrin receptors in K562 human erythroleukemia cells. Receptors were labeled with fluorescein-conjugated transferrin (FITC-Tf). Coordinated decreases in surface fluorescence counts, the photobleachig parameter K, and transferrin receptor fractional mobility were observed as FITC-Tf was cleared from the cell surface by receptor-mediated endocytosis. Based on the kinetics of decrease in these parameters, first order rate constants for FITC-Tf uptake at 37°C and 21°C were calculated to be 0.10-0.15 min?1 and 0.02–0.03 min, respectively. K562 cells were treated with colchicine or vinblastine to investigate the role of microtubules in transferrin receptor movement and endocytosis. Treatment of cells for 1 hr with a microtubule inhibitor prevented transferrin receptor endocytosis but had no effect on the translational mobility of cell surface receptors. In contrast, drug treatment for 3 hr caused translational immobilization of cell surface receptors as well as inhibition of endocytosis. These effects were not produced by β-lumicolchicine, an inactive colchicine analog, or by cytochalasin, a microfilament inhibitor. The effect of microtuble inhibitors on transferrin receptor mobility was reversed by pretreating cells with taxol, a microtubule-stabilizing agent. Microtubule inhibitors had no effect on the translational mobility of cell surface glycophorins or phospholipids, indicating that intact microtubules were not required for translational movement of these molecules. We conclude that the translational movement of cell surface transferrin receptors is directed by a subpopulation of relatively drug-resistant microtubules. In contrast, transferrin receptor endocytosis depends on a subpopulation of microtubules that is relatively sensitive to the action of inhibitors. These results appear to demonstrate at least two functional roles for microtubules in receptor-mediated transferrin uptake in K562 cells. © 1994 Wiley-Liss, Inc.  相似文献   
4.
Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment.  相似文献   
5.
6.
Study on bioactive molecules, capable of stabilizing G-Quadruplex structures is considered to be a potential strategy for anticancer drug development. Berberrubine (BER) and two of its analogs bearing alkyl phenyl and biphenyl substitutions at 13-position were studied for targeting human telomeric G-quadruplex DNA sequence. The structures of berberrubine and analogs were optimized by density functional theory (DFT) calculations. Time-dependent DFT (B3LYP) calculations were used to establish and understand the nature of the electronic transitions observed in UV–vis spectra of the alkaloid. The interaction of berberrubine and its analogs with human telomeric G-quadruplex DNA sequence 5′-(GGGTTAGGGTTAGGGTTAGGG)-3′ was investigated by biophysical techniques and molecular docking study. Both the analogs were found to exhibit higher binding affinity than natural precursor berberrrubine. 13-phenylpropyl analog (BER1) showed highest affinity [(1.45 ± 0.03) × 105 M?1], while the affinity of the 13-diphenyl analog (BER2) was lower at (1.03 ± 0.05) × 105 M?1, and that of BER was (0.98 ± 0.03) × 105 M?1. Comparative fluorescence quenching studies gave evidence for a stronger stacking interaction of the analog compared to berberrubine. The thiazole orange displacement assay has clearly established that the analogs were more effective in displacing the end stacked dye in comparison to berberrubine. Molecular docking study showed that each alkaloid ligand binds primarily at the G rich regions of hTelo G4 DNA which makes them G specific binder towards hTelo G4 DNA. Isothermal titration calorimetry studies of quadruplex–berberrubine analog interaction revealed an exothermic binding that was favored by both enthalpy and entropy changes in BER in contrast to the analogs where the binding was majorly enthalpy dominated. A 1:1 binding stoichiometry was revealed in all the systems. This study establishes the potentiality of berberrubine analogs as a promising natural product based compounds as G-quadruplex-specific ligands.  相似文献   
7.
Intravital microscopy allows detailed analysis of leukocyte trafficking in vivo, but fails to identify the nature of leukocytes investigated. Here, we describe the development of a CD2-enhanced green fluorescence protein (EGFP)-transgenic mouse to characterize lymphocyte trafficking during inflammation in vivo. A CD2-EGFP plasmid construct including the CD2 promoter, the EGFP transgene, and the CD2 locus control region was injected into B6CBA/F1 pronuclei. EGFP+ offspring were backcrossed into C57BL/6 mice for six generations. Flow cytometry demonstrated that all peripheral blood EGFP+ cells were positive for CD2 and negative for the granulocyte Ag Ly 6-G (GR-1). EGFP(high) cells stained positive for CD2, CD3, CD8, TCR beta-chain, and NK1.1 but did not express the B cell and monocyte markers CD45RA, CD19, and CD11b. In vitro stimulation assays revealed no difference in lymphocyte proliferation and IL-2 secretion between EGFP+ and EGFP- mice. Intravital microscopy of untreated or TNF-alpha-treated cremaster muscle venules showed EGFP+ cells in vivo, but these cells did not roll or adhere to the vessel wall. In cremaster muscle venules treated with both TNF-alpha and IFN-gamma, EGFP(high) cells rolled, adhered, and transmigrated at a rolling velocity slightly higher (11 microm/s) than that of neutrophils (10 microm/s). Blocking alpha4 integrin with a mAb increased rolling velocity to 24 microm/s. These findings show that CD8+ T cells roll in TNF-alpha/IFN-gamma-pretreated vessels in vivo via an alpha4 integrin-dependent pathway.  相似文献   
8.
9.
DNA minor groove ligands provide a paradigm for double-stranded DNA recognition, where common structural motifs provide a crescent shape that matches the helix turn. Since minor groove ligands are useful in medicine, new ligands with improved binding properties based on the structural information about DNA-ligand complexes could be useful in developing new drugs. Here, two new synthetic analogues of AT specific Hoechst 33258 5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxyphenyl)-5'-benzimidazolyl] benzimidazole (DMA) and 5-(4-methylpiperazin-1-yl)-2-[2'[2'-(4-hydroxy-3-methoxyphenyl)-5' '-benzimidazolyl]-5'-benzimidazolyl] benzimidazole (TBZ) were evaluated for their DNA binding properties. Both analogues are bisubstituted on the phenyl ring. DMA contains two ortho positioned methoxy groups, and TBZ contains a phenolic group at C-4 and a methoxy group at C-3. Fluorescence yield upon DNA binding increased 100-fold for TBZ and 16-fold for DMA. Like the parent compound, the new ligands showed low affinity to GC-rich (K approximately 4 x 10(7) M(-1)) relative to AT-rich sequences (K approximately 5 x 10(8) M(-1)), and fluorescence lifetime and anisotropy studies suggest two distinct DNA-ligand complexes. Binding studies indicate expanded sequence recognition for TBZ (8-10 AT base pairs) and tighter binding (DeltaT(m) of 23 degrees C for d (GA(5)T(5)C). Finally, EMSA and equilibrium binding titration studies indicate that TBZ preferentially binds highly hydrated duplex domains with altered A-tract conformations d (GA(4)T(4)C)(2) (K= 3.55 x 10(9) M(-1)) and alters its structure over d (GT(4)A(4)C)(2) (K = 3.3 x 10(8) M(-1)) sequences. Altered DNA structure and higher fluorescence output for the bound fluorophore are consistent with adaptive binding and a constrained final complex. Therefore, the new ligands provide increased sequence and structure selective recognition and enhanced fluorescence upon minor groove binding, features that can be useful for further development as probes for chromatin structure stability.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号