首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
The natural phenolic compounds syringaldehyde and vanillin were compared to the synthetic mediators 1-hydroxybenzotriazole, violuric acid and promazine in terms of boosting efficiency in a laccase-assisted biobleaching of eucalyptus kraft pulp. Violuric acid and 1-hydroxybenzotriazole revealed to be the most effective mediators of the bioprocess. Nevertheless, laccase-syringaldehyde system also improved the final pulp properties (28% delignification and 63.5% ISO brightness) compared to the process without mediator (23% and 61.5% respectively), in addition to insignificant denaturation effect over laccase. The efficiency of the biobleaching process was further related to changes in non-conventionally used optical and chromatic parameters of pulp, such as (L( *)), chroma (C( *)) and dye removal index (DRI) showing good correlation. Adverse coupling reactions of the natural phenolic mediators on pulp lignin were predicted by electrochemical studies, demonstrating the complexity of the laccase-mediator reaction on pulp.  相似文献   
2.
Advances in development of nanocomposite gels that provide localized delivery of pharmaceuticals for treatment of chronic wounds are being highly pursued. To design such materials, the use of natural polymers is recommendable due to their intrinsic biocompatibility and biodegradability. Moreover, the use of biocatalytic approaches for composite assembling is preferred compared to harsh chemical cross‐linking reagents. In this study, HRP catalyzed cross‐linking of hydrogels from aqueous solution of thiolated chitosan to in situ incorporated sonochemically synthesized epigallocatechin gallate nanospheres (EGCG NSs). The potential of the generated NSs for chronic wound treatment was evaluated by assessing their antibacterial properties and inhibitory effect on myeloperoxidase and collagenase—major enzymes of inflamed chronic wounds. The EGCG NSs displayed better antibacterial and antienzymatic properties compared to the EGCG in solution. Also, the NSs were incorporated into hydrogels without affecting their integrity and were released intact in a sustained manner (during 6 days). The cytotoxicity assay confirmed the compatibility of the hybrid material with human fibroblasts that suffered less than 10% decrease in viability during 24 h. Release of functional phenolic NSs and good compatibility of the composite hydrogel with cells suggested its potential application in chronic wound management.  相似文献   
3.
A comparative study of enzyme-mediated indigo reduction is presented as an environmentally-friendly alternative to alkaline sodium dithionite reduction. The effect of the mediator 1,8-dihydroxy-9,10-anthraquinone in enzymatic reduction was studied by means of voltammetry, both in the presence and absence of different textile materials (polyamide 6, polyamide 6,6 and cotton), and compared to chemically reduced indigo. It was observed that bio-catalytic formation of leuco indigo and its exhaustion on substrates is inversely proportional to the pH within the range of 7–11. Additionally, substrate coloration was strongly influenced by the mediator, resulting in in situ formation of leuco indigo. This effect was most pronounced for polyamide substrates. The reuse of an enzyme-mediated reduction bath for dyeing was assessed showing that the levelness of the obtained shade was either excellent or good at pH 9 and 11, respectively. The wash, perspiration, and light color fastness properties of all textile materials dyed with enzymatically-reduced indigo were comparable or even better than those obtained with chemically reduced indigo. The use of enzyme-mediated reduction of indigo combined with potential reuse of the reduction bath represents a cost effective and environmentally-friendly dyeing process that can be applied for the dyeing of natural cellulosic and synthetic polyamide fibres.  相似文献   
4.
Oxidation of colourless dye precursors with laccase enzyme provided simultaneous “in situ” generation and fixation of a pigment on amino groups pre-functionalized cotton fabric. Aromatic amine moieties of 2,5-diaminobenzenesulfonic acid introduced onto tosylated cotton were coupled and copolymerised with a phenolic compound catechol into coloured product covalently fixed on the fabric upon oxidation with laccase. The controlled amination of cellulose in a first step and subsequent colouration allowed for up to 95% pigment fixation on the fabric. Electrochemical studies were performed to elucidate the mechanism of the pigment formation. The pigment was further isolated from the acid hydrolysate of the dyed cellulose fabric to confirm the covalent fixation and to further elucidate the pigment structure by means of FTIR, MS, 1H and 13C NMR analysis. An oligomeric pigment has been identified composed by up to six phenolic units.  相似文献   
5.
Eight Ni proteins are known and three of these, CO dehydrogenase (CODH), acetyl-CoA synthase (ACS), and hydrogenase, are Ni-Fe-S proteins. In the last three years, the long-awaited structures of CODH and ACS have been solved. The bioinorganic community was shocked, as the structures of the active sites of CODH and ACS, the C- and A-cluster, respectively, which each had been predicted to consist of a [Fe4S4] cluster bridged to a single Ni, revealed unexpected compositions and arrangements. Crystal structures of ACS revealed major differences in protein conformation and in A-cluster composition; for example, a [Fe4S4] cluster bridged to a binuclear center in which one of the metal binding sites was occupied by Ni, Cu, or Zn. Recent studies have revealed Ni-Ni to be the active state, unveiled the source of the heterogeneity that had plagued studies of CODH/ACS for decades, and produced a metal-replacement strategy to generate highly active and nearly homogeneous enzyme.Abbreviations CFeSP corrinoid iron-sulfur protein - CH3H4folate methyltetrahydrofolate - CODH/ACS carbon monoxide dehydrogenase/acetyl-CoA synthases - ENDOR electron nuclear double resonance - MeTr methyltransferase  相似文献   
6.
The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a(3) moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba(3)-oxidase from Thermus thermophilus, determined at ~2.8-3.2? resolution, reveal a Fe-C distance of ~2.0?, a Cu-O distance of 2.4? and a Fe-C-O angle of ~126°. Upon photodissociation at 100K, X-ray structures indicate loss of Fe(a3)-CO and appearance of Cu(B)-CO having a Cu-C distance of ~1.9? and an O-Fe distance of ~2.3?. Absolute FTIR spectra recorded from single crystals of reduced ba(3)-CO that had not been exposed to X-ray radiation, showed several peaks around 1975cm(-1); after photolysis at 100K, the absolute FTIR spectra also showed a significant peak at 2050cm(-1). Analysis of the 'light' minus 'dark' difference spectra showed four very sharp CO stretching bands at 1970cm(-1), 1977cm(-1), 1981cm(-1), and 1985cm(-1), previously assigned to the Fe(a3)-CO complex, and a significantly broader CO stretching band centered at ~2050cm(-1), previously assigned to the CO stretching frequency of Cu(B) bound CO. As expected for light propagating along the tetragonal axis of the P4(3)2(1)2 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba(3) crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO(2) at 2337cm(-1) and one from traces of CO at 2133cm(-1); while bands associated with CO bound to either Fe(a3) or to Cu(B) in "light" minus "dark" FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2? and FTIR spectra support the long-held position that photolysis of Fe(a3)-CO in cytochrome c oxidases leads to significant trapping of the CO on the Cu(B) atom; Fe(a3) and Cu(B) ligation, at the resolutions reported here, are otherwise unaltered.  相似文献   
7.
Ebola virus infects a wide variety of adherent cell types, while nonadherent cells are found to be refractory. To explore this correlation, we compared the ability of pairs of related adherent and nonadherent cells to bind a recombinant Ebola virus receptor binding domain (EboV RBD) and to be infected with Ebola virus glycoprotein (GP)-pseudotyped particles. Both human 293F and THP-1 cells can be propagated as adherent or nonadherent cultures, and in both cases adherent cells were found to be significantly more susceptible to both EboV RBD binding and GP-pseudotyped virus infection than their nonadherent counterparts. Furthermore, with 293F cells the acquisition of EboV RBD binding paralleled cell spreading and did not require new mRNA or protein synthesis.  相似文献   
8.
A catalase preparation from a newly isolated Bacillus sp. was covalently immobilized on silanized alumina using glutaraldehyde as crosslinking agent. The effect of the coupling time of the enzyme-support reaction was determined in terms of protein recovery and immobilization yield and a certain balance point was found after which the activity recovery decreased. The activity profile of the immobilized catalase at high pH and temperature was investigated. The immobilized enzyme showed higher stabilities (214 h at pH 11, 30°C) at alkaline pH than the free enzyme (10 h at pH 11, 30°C). The immobilized catalase was inhibited by anionic stabilizers or surfactants added to the hydrogen peroxide substrate solution.  相似文献   
9.
Collagen sponges loaded with polyphenols from Hamamelis virginiana were investigated as active materials for chronic wound dressings, evaluating in vitro the inhibition of two major enzymes that impair the wound healing process - myeloperoxidase (MPO) and collagenase. Prior to polyphenols loading, collagen was cross-linked with genipin to improve its biostability. The effect of genipin cross-linking and polyphenol concentration in the development of mechanically and enzymatically stable sponges was studied. The tensile strength of the cross-linked collagen increased with the increase of the cross-linking degree, coupled to decrease in the elongation and the swelling capacity of the sponges. The stability of the sponges to collagenase digestion reached maximum when 1 mM genipin was used. However, the biostability decreased more than 10-fold after loading the sponges with polyphenols (0.5 mg/mL), nevertheless, this effect was partially overcome using higher concentration of polyphenols (1 and 2 mg/mL) to inhibit collagenase. Moreover, the polyphenols released from the sponges were sufficient for complete inhibition of MPO activity. No considerable cytotoxicity of the genipin cross-linked collagen loaded with polyphenols was observed evaluating the NIH 3T3 fibroblasts viability.  相似文献   
10.
Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 ? (1 ?=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,β-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号