首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  22篇
  2018年   1篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1990年   1篇
排序方式: 共有22条查询结果,搜索用时 10 毫秒
1.
Whole genome sequencing has allowed rapid progress in the application of forward genetics in model species. In this study, we demonstrated an application of next-generation sequencing for forward genetics in a complex crop genome. We sequenced an ethyl methanesulfonate-induced mutant of Sorghum bicolor defective in hydrogen cyanide release and identified the causal mutation. A workflow identified the causal polymorphism relative to the reference BTx623 genome by integrating data from single nucleotide polymorphism identification, prior information about candidate gene(s) implicated in cyanogenesis, mutation spectra, and polymorphisms likely to affect phenotypic changes. A point mutation resulting in a premature stop codon in the coding sequence of dhurrinase2, which encodes a protein involved in the dhurrin catabolic pathway, was responsible for the acyanogenic phenotype. Cyanogenic glucosides are not cyanogenic compounds but their cyanohydrins derivatives do release cyanide. The mutant accumulated the glucoside, dhurrin, but failed to efficiently release cyanide upon tissue disruption. Thus, we tested the effects of cyanide release on insect herbivory in a genetic background in which accumulation of cyanogenic glucoside is unchanged. Insect preference choice experiments and herbivory measurements demonstrate a deterrent effect of cyanide release capacity, even in the presence of wild-type levels of cyanogenic glucoside accumulation. Our gene cloning method substantiates the value of (1) a sequenced genome, (2) a strongly penetrant and easily measurable phenotype, and (3) a workflow to pinpoint a causal mutation in crop genomes and accelerate in the discovery of gene function in the postgenomic era.  相似文献   
2.
Abtract  Analysis of near-isogenic lines (NILs) that differ at quantitative trait loci (QTL) can be an effective approach for the detailed mapping and characterization of individual loci. Although NILs are useful for genetic and physiological studies, the time and effort required to develop these lines have limited their use. Here we describe a procedure to identify NILs for any region of the genome that can be analyzed with molecular or other genetic markers. The procedure utilizes molecular markers to identify heterogeneous inbred families (HIFs) that segregate for a genomic region of interest. Each HIF is isogenic at the majority of loci in the genome, but NILs differing for markers linked to QTL of interest can be extracted from segregating families. The application of this procedure is described for two QTL associated with seed weight in sorghum. A population of 98 HIFs was screened with two RAPD markers from different linkage groups that were associated with seed weight. Three segregating families were identified for each marker. The progeny of these HIFs were characterized for the segregation of seed weight and other yield components and for markers flanking each QTL. NILs derived from each HIF had significantly different seed weights confirming the presence of at least two loci that influence seed weight in sorghum. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   
3.
We examined the separate and combined effects of 60 Hz sinusoidal magnetic fields (MFs) and a phorbol ester on protein kinase C (PKC) activity in HL60 cells. No enhancement in PKC activity was observed when a cell culture was exposed to a 1.1 mT (rms) MF alone or to a combination of MF and 2 μM phorbol 12-myristate 13-acetate (PMA) for 1 h. In a second set of experiments, cells were preexposed to a less than optimal concentration of PMA (50 nM) for 45 min, followed by a 15 min exposure to both PMA and MF. The data showed a greater decrease in cytosolic PKC activity and a larger increase in membrane activity than was induced by either 1 h PMA treatment alone or PMA and sham MF exposure. One logical conclusion from these data is that MFs may be acting in a synergistic manner on a pathway that has already been activated. Therefore, we suggest that MFs, rather than producing biological effects by a new pathway or mechanism of interaction, exert their effect(s) by interacting with already functioning reactions or pathways. If correct, the question of an MF's mechanism of interaction refocuses on how weak fields might enhance or depress a molecular reaction in progress, rather than on finding a new transduction pathway. Bioelectromagnetics 19:469–476, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
4.
After injury to the central nervous system, a glial scar develops that physically and biochemically inhibits axon growth. In the scar, activated astrocytes secrete inhibitory extracellular matrix, of which chondroitin sulfate proteoglycans (CSPGs) are considered the major inhibitory component. An inhibitory interface of CSPGs forms around the lesion and prevents axons from traversing the injury, and decreasing CSPGs can enhance axon growth. In this report, we established an in vitro interface model of activated astrocytes and subsequently investigated gene delivery as a means to reduce CSPG levels and enhance axon growth. In the model, a continuous interface of CSPG producing astrocytes was created with neurons seeded opposite the astrocytes, and neurite crossing, stopping, and turning were evaluated as they approached the interface. We investigated the efficacy of lentiviral delivery to degrade or prevent the synthesis of CSPGs, thereby removing CSPG inhibition of neurite growth. Lentiviral delivery of RNAi targeting two key CSPG synthesis enzymes, chondroitin polymerizing factor and chondroitin synthase‐1, decreased CSPGs, and reduced inhibition by the interface. Degradation of CSPGs by lentiviral delivery of chondroitinase also resulted in less inhibition and more neurites crossing the interface. These results indicate that the interface model provides a tool to investigate interventions that reduce inhibition by CSPGs, and that gene delivery can be effective in promoting neurite growth across an interface of CSPG producing astrocytes. Biotechnol. Bioeng. 2013; 110: 947–957. © 2012 Wiley Periodicals, Inc.  相似文献   
5.
The experimental autoimmune encephalomyelitis (EAE) model resembles certain aspects of multiple sclerosis (MScl), with common features such as motor dysfunction, axonal degradation, and infiltration of T-cells. We studied the cerebrospinal fluid (CSF) proteome in the EAE rat model to identify proteomic changes relevant for MScl disease pathology. EAE was induced in male Lewis rats by injection of myelin basic protein (MBP) together with complete Freund's adjuvant (CFA). An inflammatory control group was injected with CFA alone, and a nontreated group served as healthy control. CSF was collected at day 10 and 14 after immunization and analyzed by bottom-up proteomics on Orbitrap LC-MS and QTOF LC-MS platforms in two independent laboratories. By combining results, 44 proteins were discovered to be significantly increased in EAE animals compared to both control groups, 25 of which have not been mentioned in relation to the EAE model before. Lysozyme C1, fetuin B, T-kininogen, serum paraoxonase/arylesterase 1, glutathione peroxidase 3, complement C3, and afamin are among the proteins significantly elevated in this rat EAE model. Two proteins, afamin and complement C3, were validated in an independent sample set using quantitative selected reaction monitoring mass spectrometry. The molecular weights of the identified differentially abundant proteins indicated an increased transport across the blood-brain barrier (BBB) at the peak of the disease, caused by an increase in BBB permeability.  相似文献   
6.
7.
Multiple Sclerosis (MScl) is a neurodegenerative disease of the CNS, associated with chronic neuroinflammation. Cerebrospinal fluid (CSF), being in closest interaction with CNS, was used to profile neuroinflammation to discover disease-specific markers. We used the commonly accepted animal model for the neuroinflammatory aspect of MScl: the experimental autoimmune/allergic encephalomyelitis (EAE). A combination of advanced (1)H NMR spectroscopy and pattern recognition methods was used to establish the metabolic profile of CSF of EAE-affected rats (representing neuroinflammation) and of two control groups (healthy and peripherally inflamed) to detect specific markers for early neuroinflammation. We found that the CSF metabolic profile for neuroinflammation is distinct from healthy and peripheral inflammation and characterized by changes in concentrations of metabolites such as creatine, arginine, and lysine. Using these disease-specific markers, we were able to detect early stage neuroinflammation, with high accuracy in a second independent set of animals. This confirms the predictive value of these markers. These findings from the EAE model may help to develop a molecular diagnosis for the early stage MScl in humans.  相似文献   
8.
Unprocessed 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase, retaining the mitochondrial signal sequence, has been proposed to correspond to a peroxisomal isoform. Using a modified expression plasmid and purification protocol, it is now possible to isolate substantial amounts (>10mg) of highly purified peroxisomal HMG-CoA lyase. These improvements facilitate more detailed protein chemistry approaches for characterization of the enzyme, which exhibits substantial (eightfold) dithiothreitol (DTT) stimulation of activity. The C323S mutant shows little DTT activation. Superose gel filtration chromatography data have prompted other investigators to hypothesize that the peroxisomal isoform is a monomer. This study confirms the elution properties presented in that earlier report, but also demonstrates anomalous elution up on Superose chromatography. Elution properties observed using a polyacrylamide resin (Bio-Gel P100) suggest a dimeric, rather than monomeric, enzyme. This observation has been further tested by protein chemistry experiments. The peroxisomal enzyme forms a covalently linked dimeric species upon crosslinking with dibromopropanone or o-phenylenedimaleimide or upon disulfide formation as a result of incubation with diamide. Cysteine-323 is required for intersubunit covalent crosslinking. Crosslinking efficiency is not dependent on HMG-CoA lyase protein concentration nor is it influenced by the presence of varying concentrations of an unrelated protein, such as ovalbumin. Sedimentation equilibrium analyses do not indicate a monomeric form of either human mitochondrial or human peroxisomal HMG-CoA lyase; the results suggest that these proteins are predominantly dimers. The retention of the basic N-terminal mitochondrial signal sequence in the peroxisomal HMG-CoA lyase isoform may influence elution from Superose gel filtration media but does not alter the oligomeric status of the enzyme.  相似文献   
9.
Experimental Autoimmune Encephalomyelitis (EAE) is the most commonly used animal model for Multiple Sclerosis (MScl). CSF metabolomics in an acute EAE rat model was investigated using targetted LC-MS and GC-MS. Acute EAE in Lewis rats was induced by co-injection of Myelin Basic Protein with Complete Freund's Adjuvant. CSF samples were collected at two time points: 10?days after inoculation, which was during the onset of the disease, and 14?days after inoculation, which was during the peak of the disease. The obtained metabolite profiles from the two time points of EAE development show profound differences between onset and the peak of the disease, suggesting significant changes in CNS metabolism over the course of MBP-induced neuroinflammation. Around the onset of EAE the metabolome profile shows significant decreases in arginine, alanine and branched amino acid levels, relative to controls. At the peak of the disease, significant increases in concentrations of multiple metabolites are observed, including glutamine, O-phosphoethanolamine, branched-chain amino acids and putrescine. Observed changes in metabolite levels suggest profound changes in CNS metabolism over the course of EAE. Affected pathways include nitric oxide synthesis, altered energy metabolism, polyamine synthesis and levels of endogenous antioxidants. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0306-3) contains supplementary material, which is available to authorized users.  相似文献   
10.
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the divalent cation-dependent cleavage of HMG-CoA to produce acetyl-CoA and acetoacetate. Arginine-41 is an invariant residue in HMG-CoA lyases. Mutation of this residue (R41Q) correlates with human HMG-CoA lyase deficiency. To evaluate the functional importance of arginine-41, R41Q and R41M recombinant mutant human HMG-CoA lyase proteins have been constructed, expressed, and purified. These mutant proteins retain structural integrity based on Mn(2+) binding and affinity labeling stoichiometry. R41Q exhibits a 10(5)-fold decrease in V(max); R41M activity is >or=10-fold lower than the activity of R41Q. Acetyldithio-CoA, an analogue of the reaction product, acetyl-CoA, has been employed to test the function of arginine-41, as well as other residues (e.g., aspartate-42 and histidine-233) implicated in catalysis. Acetyldithio-CoA supports enzyme-catalyzed exchange of the methyl protons of the acetyl group with solvent; exchange is dependent on the presence of Mg(2+) and acetoacetate. In comparison with wild-type human enzyme, D42A and H233A mutant enzymes exhibit 4-fold and 10-fold decreases, respectively, in the proton exchange rate. In contrast, R41Q and R41M mutants do not catalyze any substantial enzyme-dependent proton exchange. These results suggest a role for arginine-41 in deprotonation or enolization of acetyldithio-CoA and implicate this residue in the HMG-CoA cleavage reaction chemistry that leads to acetyl-CoA product formation. Assignment of arginine-41 as an active site residue is also supported by a homology model for HMG-CoA lyase based on the structure of 4-hydroxy-2-ketovalerate aldolase. This model suggests the proximity of arginine-41 to other amino acids (aspartate-42, glutamate-72, histidine-235) implicated as active site residues based on their function as ligands to the activator cation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号