首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   161篇
  免费   16篇
  国内免费   7篇
  184篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   16篇
  2013年   9篇
  2012年   6篇
  2011年   18篇
  2010年   13篇
  2009年   3篇
  2008年   11篇
  2007年   11篇
  2006年   7篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
1.
K Jo  M D Topal 《Nucleic acids research》1996,24(21):4171-4175
Substituting lysine for leucine at position 43 (L43K) transforms NaeI from restriction endonuclease to topoisomerase and makes NaeI hypersensitive to intercalative anticancer drugs. Here we investigated DNA recognition by Nael-L43K. Using DNA competition and gel retardation assays, NaeI-L43K showed reduced affinity for DNA substrate and the ability to bind both single- and double-stranded DNA with a definite preference for the former. Sedimentation studies showed that under native conditions NaeI-L43K, like NaeI, is a dimer. Introduction of mismatched bases into double-stranded DNA significantly increased that DNA's ability to inhibit NaeI-L43K. Wild-type NaeI showed no detectable binding of either single-stranded DNA or mismatched DNA over the concentration range studied. These results demonstrate that the L43K substitution caused a significant change in recognition specificity by NaeI and imply that NaeI-L43K's topoisomerase activity is related to its ability to bind single-stranded and distorted regions in DNA. A mechanism is proposed for the evolution of the NaeI restriction-modification system from a topoisomerase/ligase by a mutation that abolished religation activity and provided a needed change in DNA recognition.  相似文献   
2.
3.
Endonuclease NaeI cleaves DNA using a two-site mechanism. The DNA-binding sites are nonidentical: they recognize different families of flanking sequences. A unique NaeI site that is resistant to cleavage resides in M13 double-stranded DNA. NaeI can be activated to cleave this site by small DNA fragments containing one or more NaeI sites. These activators are not practical for genetic engineering because unphosphorylated activators that are consumed during the cleavage of substrate give ends that may interfere with subsequent ligations. We show that a DNA fragment containing phosphorothioate linkages at the NaeI scissile bonds (S-activator) is not cleaved by NaeI, even though this S-activator binds to the substrate site. The S-activator activates NaeI to cleave M13 DNA under conditions that completely exhaust unsubstituted activator. These results demonstrate that activation is not coupled to cleavage of activator, that NaeI reverts to its inactive state soon after dissociation of the EA complex, and that S-activator makes for a nondepletable activator during prolonged incubations.  相似文献   
4.
M D Topal  M M Warshaw 《Biopolymers》1976,15(9):1755-1773
A least squares analysis of the titration properties of several dinucleoside monophosphates enables calculation of the pK's for protonation. These pK's are used to resolve the spectral properties of dinucleoside monophosphates with one base charged from the apparent spectral properties of a dinucleoside monophosphate in aqueous solution. This method is applied to dinucleoside monophosphates containing adenosine and/or cytidine. Results of CD, nmr, and CD-temperature dependence measurements are presented. The results indicate that singly protonated dimers of these nucleosides stack as do their unprotonated analogs. It is suggested that this is true for all dimers with one base charged.  相似文献   
5.
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies.

The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.  相似文献   
6.
生态文明是人类文明发展的新阶段,其强调人与自然的协调发展。基于公众科学理论框架,采用模型模拟方法、实地问卷调查、多元回归方法,分析了乌鲁木齐居民参与城市生态文明建设的自我感知、满意程度、参与意愿,并构建了结构方程模型(SEM),探讨了居民参与城市生态文明意愿的可行路径,分析了居民参与城市生态文明建设的意愿与其相关因素间的关系,揭示了居民参与城市生态文明建设主要限制因素。结果表明:(1)居民自我感知与城市生态文明建设参与意愿呈显著正相关,满意程度与参与意愿呈显著负相关;(2)45.36%的受访者表示非常愿意参与城市生态文明建设;(3)居民主体意识和支持度占比分别为72.92%、72.04%,生态认知、生态关注及参与信心占比分别为43.08%、64.33%和55.14%;(4)受访者对城市生态文明建设状况满意度的平均偏效应为2.32,各项满意度均值情况为:城市绿化状况(2.51)政府环境信息公开程度(2.41)城市空气状况(2.35)城市垃圾处理与分类状况(1.99)。研究成果以期为建立和推进城市生态文明建设提供科学参考。  相似文献   
7.
The ER‐bound kinase/endoribonuclease (RNase), inositol‐requiring enzyme‐1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1’s one known, specific RNA target, X box‐binding protein‐1 (XBP1) or the RNA substrates of IRE1‐dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide‐derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross‐talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1’s RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3) 5‐phosphatase‐2 (INPPL1) is a direct target of miR‐2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3/PIP2 ratio and anabolic mTOR signaling by the IRE1‐induced miR‐2137 demonstrates how the ER can provide a critical input into cell growth decisions.  相似文献   
8.
塔里木河下游胡杨空心特征   总被引:1,自引:0,他引:1  
本文选取塔里木河下游阿拉干断面胡杨林长期监测样地,分析胡杨林空心率、树洞特征及其在不同胸径和树高组间的分布特点。结果表明: 研究区胡杨种群具有较高的空心现象,空心胡杨占调查胡杨总数量的56%,约159株·hm-2;胡杨空心率在不同胸径和树高组间呈显著差异,其与胸径呈显著正相关,与树高呈显著负相关。该监测样地胡杨树洞密度约560个·hm-2,平均每株2个;所调查的胡杨树洞大部分出现在树干上(57.1%),均以树干中部洞口为主(31.3%);直径为5~15 cm的树洞(38.2%)所占比例最大。总树洞数量、单株树洞数量、树洞直径等特征与胸径呈显著正相关,与树高呈显著负相关,而各树洞类型在不同胸径和树高组间的分布不同,变化趋势不一致。胡杨树洞在各方位上的分布差异显著,树洞集中分布在正西方向上。胡杨荒漠河岸林的空心发生率较为严重,且胸径越大其空穴化程度越明显。加强保育幼龄胡杨和修复退化荒漠河岸林具有重要意义。  相似文献   
9.
Molecular chaperones are crucial for the correct folding of newly synthesized polypeptides, in particular, under stress conditions. Various studies have revealed the involvement of molecular chaperones, such as heat shock proteins, in diapause maintenance and starvation; however, the role of other chaperones in diapause and starvation relatively is unknown. In the current study, we identified two lectin‐type chaperones with calcium affinity, a calreticulin (LdCrT) and a calnexin (LdCnX), that were present in the fat body of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) during diapause. Both proteins possessed an N‐globular domain, a P‐arm domain, and a highly charged C‐terminal domain, while an additional transmembrane domain was present in LdCnX. Phylogenetic analysis revealed distinction at the order level. Both genes were expressed in multiple tissues in larval and adult stages, and constitutively throughout development, though a starvation response was detected only for LdCrT. In females, diapause‐related expression analysis in the whole body revealed an upregulation of both genes by post‐diapause, but a downregulation by diapause only for LdCrT. By contrast, males revealed no alteration in their diapause‐related expression pattern in the entire body for both genes. Fat body‐specific expression analysis of both genes in relation to diapause revealed the same expression pattern with no alteration in females and downregulation in males by post‐diapause. This study suggests that calcium‐binding chaperones play similar and possibly gender‐specific roles during diapause.  相似文献   
10.
Essential role for ADAM19 in cardiovascular morphogenesis   总被引:6,自引:0,他引:6       下载免费PDF全文
Congenital heart disease is the most common form of human birth defects, yet much remains to be learned about its underlying causes. Here we report that mice lacking functional ADAM19 (mnemonic for a disintegrin and metalloprotease 19) exhibit severe defects in cardiac morphogenesis, including a ventricular septal defect (VSD), abnormal formation of the aortic and pulmonic valves, leading to valvular stenosis, and abnormalities of the cardiac vasculature. During mouse development, ADAM19 is highly expressed in the conotruncus and the endocardial cushion, structures that give rise to the affected heart valves and the membranous ventricular septum. ADAM19 is also highly expressed in osteoblast-like cells in the bone, yet it does not appear to be essential for bone growth and skeletal development. Most adam19(-/-) animals die perinatally, likely as a result of their cardiac defects. These findings raise the possibility that mutations in ADAM19 may contribute to human congenital heart valve and septal defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号