首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   27篇
  346篇
  2023年   3篇
  2022年   5篇
  2021年   10篇
  2020年   2篇
  2019年   9篇
  2018年   11篇
  2017年   8篇
  2016年   3篇
  2015年   19篇
  2014年   23篇
  2013年   10篇
  2012年   28篇
  2011年   38篇
  2010年   11篇
  2009年   14篇
  2008年   17篇
  2007年   19篇
  2006年   14篇
  2005年   13篇
  2004年   14篇
  2003年   8篇
  2002年   12篇
  2001年   5篇
  2000年   9篇
  1999年   7篇
  1998年   4篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1984年   2篇
  1983年   1篇
  1971年   1篇
排序方式: 共有346条查询结果,搜索用时 0 毫秒
1.
Various studies in unicellular and multicellular organisms have shown that codon bias plays a significant role in translation efficiency (TE) by co-adaptation to the tRNA pool. Yet, in humans and other mammals the role of codon bias is still an open question, with contradictory results from different studies. Here we address this question, performing a large-scale tissue-specific analysis of TE in humans, using the tRNA Adaptation Index (tAI) as a direct measure for TE. We find tAI to significantly correlate with expression levels both in tissue-specific and in global expression measures, testifying to the TE of human tissues. Interestingly, we find significantly higher correlations in adult tissues as opposed to fetal tissues, suggesting that the tRNA pool is more adjusted to the adult period. Optimization based analysis suggests that the tRNA pool—codon bias co-adaptation is globally (and not tissue-specific) driven. Additionally, we find that tAI correlates with several measures related to the protein functionally importance, including gene essentiality. Using inferred tissue-specific tRNA pools lead to similar results and shows that tissue-specific genes are more adapted to their tRNA pool than other genes and that related sets of functional gene groups are translated efficiently in each tissue. Similar results are obtained for other mammals. Taken together, these results demonstrate the role of codon bias in TE in humans, and pave the way for future studies of tissue-specific TE in multicellular organisms.  相似文献   
2.
3.
Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony''s foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately.  相似文献   
4.
The appearance of arachidonic acid (AA) oxidation products in fetal rabbit brain and placenta under normal or partial short-term ischemic episodes induced by placental blood vessel restriction was examined. Intracerebral administration of [3H]AA into close-to-term rabbit fetuses gave rise to radioactively labeled prostaglandin (PG) E2, thromboxane B2, and 6-keto-PGF1 alpha metabolites as detected by HPLC analysis. A significant increase of 20-30% of [3H]AA precursor into eicosanoids was detected in brain of fetuses after 2-h restriction. The thromboxane B2 and 6-keto-PGF1 alpha levels were determined by radioimmunoassay technique over a period of 48 h following ischemic episodes. Thromboxane B2 content in affected animals was higher by five- and twofold at 3 h over control fetal brain and placental tissue values, respectively, and remained significantly higher for 24 h. 6-Keto-PGF1 alpha levels reached a peak value that was greater by 2.5- and 1.5-fold at 6 h for the ischemic brain and placental tissue, respectively, compared with control fetuses. PGE2 levels were less affected, attaining a maximum of 1.9- and 1.1-fold in brain and placenta correspondingly. The thromboxane/prostacyclin ratio reached a maximum in the brain after approximately 3 h, while that in the placenta continued to rise even after 20 h. Persisting high levels of thromboxane are indicative of cerebral vasoconstriction and may suggest possible damaging effects.  相似文献   
5.
The aim of the work is to identify and characterize the hemoglobins found in B6C3F1 mice using mass spectrometry. The primary structures are compared to those reported for BALB/c mice. Individual hemoglobin chains were isolated by reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses of the globins were determined using electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). The purified globin chains were enzymatically cleaved and the resulting peptides were separated by RP-HPLC. The chains were identified by N-terminal sequencing and mass spectrometry (MALDI). Selected peptides were analysed by Edman degradation. ESI analysis indicates that B6C3F1 mice have two -globin chains (-1 and -2) and at least three β-globin chains, β-1, β-2 and β-3. This is one additional - and one additional β-globin chain than reported in the literature for BALB/c mice. Mass and sequence analysis of enzymatically generated peptides showed variations in the amino acid sequence in the -1, -2, β-2 and β-3 chains compared to the BALB/c mouse hemoglobins (, βminor and βmajor). The study showed that mass spectrometry in combination with traditional protein chemistry is able to identify and locate minor protein sequence variations.  相似文献   
6.
Diphtheria toxin inactivates protein synthesis elongation factor 2 by attaching ADP-ribose to an unusual post-translational amino acid derivative, diphthamide, in the factor. Previously, we prepared ribosyl-diphthamide from the ADP-ribosyl-factor and proposed on the basis of NMR spectral analysis that it is 1-α-d-ribofuranosyl-2-[3-carboxyamido-3-(trimethylammonio)propyl]histidine [N. J. Oppenheimer, and J. W. Bodley, (1981) J. Biol. Chem.256, 8579–8581 and op. cit.]. Now, using fast atom bomardment mass spectrometry, the intact cation of ribosyl-diphthamide has been observed in the gas phase. The theoretical mass of the structure proposed for ribosyl-diphthamide uniquely agrees with the observed mass of the inact cation of the compound to within 2 ppm. Collisional activation decomposition mass spectral analysis provided additional structural confirmation. Thus, although the compound has not been synthesized, all available evidence appears uniquely consistent with the structure of ribosyl-diphthamide previously proposed.  相似文献   
7.
The positive and negative ion fast atom bombardment (FAB) mass spectra and fast atom bombardment collisionally activated decomposition (CAD) spectra of a series of nucleosides and two dinucleotides are reported. The nucleosides studied are substituted forms of guanosine, adenosine, nebularine, tubercidin, uridine, and related pyrimidines. The FAB and CAD data both contain similar information. The CAD spectra are found to provide some structural information not found in the FAB mass spectra. Tandem mass spectrometry also allows emphasis to be put on weak fragments which are either not observed in the FAB mass spectrum or are lost in the matrix ion signals.  相似文献   
8.
Termites are major decomposers in terrestrial ecosystems and the second most diverse lineage of social insects. The Kalotermitidae form the second-largest termite family and are distributed across tropical and subtropical ecosystems, where they typically live in small colonies confined to single wood items inhabited by individuals with no foraging abilities. How the Kalotermitidae have acquired their global distribution patterns remains unresolved. Similarly, it is unclear whether foraging is ancestral to Kalotermitidae or was secondarily acquired in a few species. These questions can be addressed in a phylogenetic framework. We inferred time-calibrated phylogenetic trees of Kalotermitidae using mitochondrial genomes of ∼120 species, about 27% of kalotermitid diversity, including representatives of 21 of the 23 kalotermitid genera. Our mitochondrial genome phylogenetic trees were corroborated by phylogenies inferred from nuclear ultraconserved elements derived from a subset of 28 species. We found that extant kalotermitids shared a common ancestor 84 Ma (75–93 Ma 95% highest posterior density), indicating that a few disjunctions among early-diverging kalotermitid lineages may predate Gondwana breakup. However, most of the ∼40 disjunctions among biogeographic realms were dated at <50 Ma, indicating that transoceanic dispersals, and more recently human-mediated dispersals, have been the major drivers of the global distribution of Kalotermitidae. Our phylogeny also revealed that the capacity to forage is often found in early-diverging kalotermitid lineages, implying the ancestors of Kalotermitidae were able to forage among multiple wood pieces. Our phylogenetic estimates provide a platform for critical taxonomic revision and future comparative analyses of Kalotermitidae.  相似文献   
9.
Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW–peptide interactions is not always intuitive. The WW domain–containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1–WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.  相似文献   
10.
Construction materials are considerable forces of global environmental impacts, but their dynamics vis‐à‐vis urban development are poorly documented, in part because their long lifespans require elusive and sometimes nonexistent decade‐long high‐resolution data. This study analyzes the construction material flow and stock trends that shaped and were shaped by the development, decline, and renewal of the Tiexi district of Shenyang, a microcosm of China's urban transformations since the early 20th century. Chronicling building‐by‐building the material flows and stock accumulations involved in the buildup of this area, we shed light on the physical resource context of its socioeconomic history. We find that 42 million tonnes of construction materials were needed to develop the Tiexi district from 1910 to 2018, and 18 million tonnes of material outflows were generated by end‐of‐life building demolition. However, over 55% of inflows and 93% of outflows occurred since 2002 during a complete redevelopment of the district. Only small portions of end‐of‐life materials could have been reused or recycled because of temporal and typological mismatches of supply and demand and technical limitations. Our analysis reveals a dramatic decrease in median building lifetimes to as low as 6 years in the early 21st century. These findings contribute to the discussion of long‐term environmental efficiency and sustainability of societal development through construction and reflect on the challenges of urban renewal processes not only in China but also in other developing and developed countries that lost (or may lose) their traditional economic base and restructure their urban forms. This article met the requirements for a Silver/Silver JIE data openness badge described at http://jie.click/badges .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号