首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
排序方式: 共有5条查询结果,搜索用时 125 毫秒
1
1.
2.
In this study raw starch digesting amylase (RSDA) from Aspergillus carbonarius (Bainier) Thom IMI 366159 was stabilized by covalent binding on polyglutaraldehyde (PG), glutaraldehyde (G) activated chitosan beads or post immobilization cross linking of enzyme adsorbed on chitosan. Presence of Ca2+ ions (0.5–1.5 mM) activated the PG and G derivatives but repressed the crosslinked enzyme. Optimum pH for cross linked derivative increased by 2 units but was unaltered for PG and G derivatives. Immobilized amylase exhibited improved thermal and storage stability. Immobilized derivatives had no loss of activity after 1 month storage and retained above 90% activity after 10 batch reactions of 60 min each. Immobilization successfully stabilized RSDA and immobilized enzyme from A. carbonarius can be applied in numerous industries for cheap, cost effective and environmentally friendly starch hydrolytic processes to simple sugars.  相似文献   
3.

The therapeutic application of bromelain is limited due to its sensitivity to operating conditions such as high acidity, gastric proteases in the stomach juice, chemicals, organic solvents and elevated temperature. We hypothesized that bromelain immobilized on probiotic bacterial spores would show enhanced therapeutic activity through possible synergistic or additive effects. In this study, the oedema inhibition potential of bromelain immobilized on probiotic Bacillus spores was compared to the free enzyme using the carrageenan paw oedema model with Wistar rats. In batch A rats (carrageenan-induced inflammation 30 min after receiving oral treatments), group 7 rats treated with a lower dose of spore-immobilized bromelain suspension showed the highest oedema inhibition, 89.20 ± 15.30%, while group 4 treated with a lower dose of free bromelain had oedema inhibition of 60.25 ± 13.00%. For batch B rats (carrageenan-induced inflammation after receiving oral treatment for three days), group 7 rats treated with a lower dose of spore-immobilized bromelain suspension showed higher inhibition percentage (81.94 ± 8.86) than group 4 treated with a lower dose of free bromelain (78.45 ± 4.46) after 24 h. Our results showed that used alone, the enzyme and the spores produced oedema inhibition and improved the motility of the rats. The spore-immobilized bromelain formulation performed approximately 0.9-fold better than the free bromelain and the free spores at the lower evaluated dose.

  相似文献   
4.
Raw-starch-digesting enzyme (RSDA) was immobilized on Amberlite beads by conjugation of glutaraldehyde/ polyglutaraldehyde (PG)-activated beads or by crosslinking. The effect of immobilization on enzyme stability and catalytic efficiency was evaluated. Immobilization conditions greatly influenced the immobilization efficiency. Optimum pH values shifted from pH 5 to 6 for spontaneous crosslinking and sequential crosslinking, to pH 6-8 for RSDA covalently attached on polyglutaraldehyde-activated Amberlite beads, and to pH 7 for RSDA on glutaraldehyde-activated Amberlite. RSDA on glutaraldehyde-activated Amberlite beads had no loss of activity after 2 h storage at pH 9; enzyme on PG-activated beads lost 9%, whereas soluble enzyme lost 65% of its initial activity. Soluble enzyme lost 50% initial activity after 3 h incubation at 60 degrees C, whereas glutaraldehyde-activated derivative lost only 7.7% initial activity. RSDA derivatives retained over 90% activity after 10 batch reuse at 40 degrees C. The apparent Km of the enzyme reduced from 0.35 mg/ml to 0.32 mg/ml for RSDA on glutaraldehyde-activated RSDA but increased to 0.42 mg/ml for the PG-activated RSDA derivative. Covalent immobilization on glutaraldehyde Amberlite beads was most stable and promises to address the instability and contamination issues that impede the industrial use of RSDAs. Moreover, the cheap, porous, and non-toxic nature of Amberlite, ease of immobilization, and high yield make it more interesting for the immobilization of this enzyme.  相似文献   
5.
Applications of raw starch digesting amylases (RSDAs) are limited due to instability, product inhibition of enzyme and contamination. RSDA from Aspergillus carbonarius was stabilized through immobilization on agarose gel by adsorption, spontaneous crosslinking and conjugation using glycidol, glutaraldehyde or polyglutaraldehyde. Effects of immobilization on kinetics, catalytic, storage and operational stability of immobilized enzyme were evaluated. Polyglutaraldehyde activated agarose RSDA (PGAg-RSDA) gave the highest immobilization yield (100%) with expressed activity of 86.7% while that of glycidol activated RSDA (GlyAg-RSDA) was 80.4%. A shift in pH from optimum of 5 for the soluble enzyme to 6 for RSDA adsorbed on agarose followed by crosslinking with glutaraldehyde (AgRSDA-CROSS) and simultaneous adsorption and crosslinking (AgRSDA-RET), and pH 7 for PGAg-RSDA was seen. PGAg-RSDA and AgRSDA-CROSS were most pH stable and retained over 82% of their activities between pH 3.5 and 9 compared to 59% for the soluble enzyme. Thermoinactivation studies showed that immobilized RSDAs with the exception of GAg-RSDA retained over 90% of their activities at 60°C for 120 min while soluble enzyme retained only 76% activity under the same condition. AgRSDA-CROSS, PGAg-RSDA, Gly-RSDA and GAg-RSDA retained approximately 100% of their activities after 30 days storage at 4°C. GlyAg-RSDA retained 99.6%, PGAg-RSDA 94%, AgRSDA-CROSS 90%, GAg-RSDA 86.5% and Ag-RSDA-RET 80% activity after 10 batch reactions. Immobilization stabilized RSDA and permits processing at higher temperatures to reduce contamination.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号