首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2005年   1篇
  2002年   2篇
  2001年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow-derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.  相似文献   
2.
The relationship between bacterial oxidation of hydrocarbons and sulfate reduction was studied in the experimental system with liquid paraffin was used as a source of organic compounds inoculated with silt taken from a reservoir. Pseudomonads dominated in the hydrocarbon-oxidizing silt bacteriocenosis. However, Rhodococcus and Arthrobacteria amounted to not more than 3%. Arthrobacteria dominated the microbial association formed in the paraffin film of the model system. Sulfate-reducing bacteria were represented by genera Desulfomonas, Desulfotomaculum, and Desulfovibrio. The growth of sulfate-reducing bacteria in media containing with paraffin, successive products of its oxidation (cetyl alcohol, stearate, and acetate), and extracellular metabolites of hydrocarbon-reducing bacteria was studied. The data showed that sulfate-reducing bacteria did not use paraffin or cetyl alcohol as growth substrates. However, active growth of sulfate-reducing bacteria was observed in the presence of stearate and extracellular water-soluble or lipid metabolites of Arthrobacteria.  相似文献   
3.
The relationship between bacterial oxidation of hydrocarbons and sulfate reduction was studied in an experimental system with liquid paraffin used as a source of organic compounds inoculated with silt taken from a reservoir. Pseudomonads dominated in the hydrocarbon-oxidizing silt bacteriocenosis. However, Rodococcusand Arthrobacteria amounted to no more than 3%. Arthrobacteria dominated the microbial association formed in the paraffin film of the model system. Sulfate-reducing bacteria were represented by genera Desulfomonas, Desulfotomaculum, and Desulfovibrio. The growth of sulfate-reducing bacteria in media containing paraffin, successive products of its oxidation (cetyl alcohol, stearate, and acetate), and extracellular metabolites of hydrocarbon-reducing bacteria was studied. The data showed that sulfate-reducing bacteria did not use paraffin or cetyl alcohol as growth substrates. However, active growth of sulfate-reducing bacteria was observed in the presence of stearate and extracellular water-soluble or lipid metabolites of Arthrobacteria.  相似文献   
4.
The dynamics of species composition of a hydrocarbon-oxidizing bacteriocenosis of a ground suspension of Mozhaisk Reservoir has been studied. The bacteriocenosis was undergoing development in a paraffin film (model association composed of sulfate-reducing bacteria and hydrocarbon-oxidizing bacteria). The type of bacterial succession did not depend on the depth, from which ground samples were collected. Two microbial species (Pseudomonas sp. and Arthrobacter globiformis) were absolutely dominant. Pseudomonas sp. was dominant at the early and intermediate stages of the succession, whereas A. globiformis was present in the hydrocarbon-oxidizing bacteriocenosis throughout the whole period of the succession. There was a trend toward a gradual increase in the ratio of A. globiformis, and, by the end of the experiment, Pseudomonas sp. was replaced by A. globiformis almost completely. The bacterial species Micrococcus sp. and Rhodococcus erythropolis were minor components of the hydrocarbon-oxidizing bacteriocenosis under the conditions of sulfate reduction. The succession of species of hydrocarbon-oxidizing bacteria in the paraffin film of the model association reflects both the life strategy of the bacterial species under study and the degree of their tolerance to products of sulfate reduction.  相似文献   
5.
The dynamics of species composition of a hydrocarbon-oxidizing bacteriocenosis of a ground suspension of the Mozhaisk Reservoir has been studied. The bacteriocenosis was undergoing development in a paraffin film (model association composed of sulfate-reducing bacteria and hydrocarbon-oxidizing bacteria). The type of bacterial succession did not depend on the depth, from which ground samples were collected. Two microbial species (Pseudomonas sp. andArthrobacter globiformis) were absolutely dominant. Pseudomonas sp. was dominant at the early and intermediate stages of the succession, whereas A. globiformis was present in the hydrocarbon-oxidizing bacteriocenosis throughout the whole period of the succession. There was a trend toward a gradual increase in the ratio of A. globiformis, and, by the end of the experiment, Pseudomonas sp. was replaced by A. globiformis almost completely. The bacterial species Micrococcus sp. and Rhodococcus erythropolis were minor components of the hydrocarbon-oxidizing bacteriocenosis under the conditions of sulfate reduction. The succession of species of hydrocarbon-oxidizing bacteria in the paraffin film of the model association reflects both the life strategy of the bacterial species under study and the degree of their tolerance to products of sulfate reduction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号