首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   15篇
  国内免费   1篇
  2022年   3篇
  2021年   5篇
  2020年   6篇
  2019年   2篇
  2018年   6篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   11篇
  2013年   14篇
  2012年   17篇
  2011年   17篇
  2010年   15篇
  2009年   10篇
  2008年   13篇
  2007年   9篇
  2006年   12篇
  2005年   3篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   2篇
  1974年   4篇
  1973年   2篇
  1969年   1篇
  1968年   1篇
  1950年   1篇
  1928年   1篇
排序方式: 共有237条查询结果,搜索用时 359 毫秒
1.
2.
3.
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.  相似文献   
4.
Recent progress in predicting RNA structure is moving towards filling the ‘gap’ in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.  相似文献   
5.
6.
Eukaryotic chromosomes are duplicated during S phase and transmitted to progeny during mitosis with high fidelity. Chromosome duplication is controlled at the level of replication initiation, which occurs at cis-acting replicator sequences that are spaced at intervals of approximately 40 kb along the chromosomes of the budding yeast Saccharomyces cerevisiae. Surprisingly, we found that derivatives of yeast chromosome III that lack known replicators were replicated and segregated properly in at least 96% of cell divisions. To gain insight into the mechanisms that maintain these "originless" chromosome fragments, we screened for mutants defective in the maintenance of an "originless" chromosome fragment, but proficient in the maintenance of the same fragment that carries its normal complement of replicators (originless fragment maintenance mutants, or ofm). We show that three of these Ofm mutations appear to disrupt different processes involved in chromosome transmission. The OFM1-1 mutant seems to disrupt an alternative initiation mechanism, and the ofm6 mutant appears to be defective in replication fork progression. ofm14 is an allele of RAD9, which is required for the activation of the DNA damage checkpoint, suggesting that this checkpoint plays a key role in the maintenance of the "originless" fragment.  相似文献   
7.
Eukaryotic chromosomal DNA replication is initiated by a highly conserved set of proteins that interact with cis-acting elements on chromosomes called replicators. Despite the conservation of replication initiation proteins, replicator sequences show little similarity from species to species in the small number of organisms that have been examined. Examination of replicators in other species is likely to reveal common features of replicators. We have examined a Kluyeromyces lactis replicator, KARS12, that functions as origin of DNA replication on plasmids and in the chromosome. It contains a 50-bp region with similarity to two other K. lactis replicators, KARS101 and the pKD1 replication origin. Replacement of the 50-bp sequence with an EcoRI site completely abrogated the ability of KARS12 to support plasmid and chromosomal DNA replication origin activity, demonstrating this sequence is a common feature of K. lactis replicators and is essential for function, possibly as the initiator protein binding site. Additional sequences up to 1 kb in length are required for efficient KARS12 function. Within these sequences are a binding site for a global regulator, Abf1p, and a region of bent DNA, both of which contribute to the activity of KARS12. These elements may facilitate protein binding, protein/protein interaction and/or nucleosome positioning as has been proposed for other eukaryotic origins of DNA replication.  相似文献   
8.
9.
10.
A study of the physiologic and ecologic factors involved in a spontaneous seasonal gallstone cycle of deer mice (Peromyscus maniculatus gambelii) was conducted at the Tulelake National Wildlife Refuge (California, USA) from March 1991 to June 1992. The specific hypothesis examined was whether or not seasonal increases in dietary fiber intake provides the necessary conditions for a solubility defect, or supersaturation mechanism, resulting in precipitation of cholesterol gallstones. Results indicated that in addition to the seasonal gallstone prevalence cycle, these deer mice exhibit significant seasonal cycling in serum cholesterol, serum bile acids, fecal bile acids, and diet composition. These physiologic and dietary cycles were phase-advanced 3 mo over the gallstone prevalence cycle, indicating an approximate 3 mo time period for gallstone formation under field conditions. Further, seasonal dietary fiber (plant material and seeds) was positively correlated with both serum cholesterol and the fecal bile acids. This suggests that in wild deer mice, variations in dietary fiber may significantly affect the resorption of bile acids, thereby providing a potential physiologic and nutritional mechanism for spontaneous cholesterol gallstone formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号