首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (> or = 40 degrees C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 degrees C at 2-5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long-term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 degrees C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti-sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 degrees C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs.  相似文献   
2.
S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 μM; IIB, K(d) = 8 μM; IIC, K(d) = 1.0 μM). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.  相似文献   
3.
Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice.  相似文献   
4.
A genetic analysis was performed on a population derived from crosses between Viburnum lantana and Viburnum carlesii. Linkage maps were developed for each species using AFLP, random amplified polymorphic DNA (RAPD), and sequence-tagged site markers and a half-sib approach that took advantage of both the polymorphism between the species and the heterozygosity within each parent. The map for V. lantana consisted of 153 DNA markers and spanned approximately 750 cM, whereas that for V. carlesii contained 133 markers and covered 700 cM. These maps were used to determine the location of several major genes influencing leaf spot resistance, Verticillium wilt resistance, bud color, and flower scent. Both species contained moderate levels of heterozygosity. Flow cytometric analysis revealed that the genome of V. lantana was 40% larger than that of V. carlesii, and this difference was paralleled by a proportionally greater number of intercross markers (markers segregating 3:1) from V. lantana than from V. carlesii. In addition, V. lantana (n = 9) displayed a 10th linkage group for which no homolog in V. carlesii (n = 9) could be found and which contained only markers present in the former species and absent in the latter. These results suggest that Viburnum could be an interesting genetic model for Caprifoliaceae sensu lato.  相似文献   
5.
6.
Titanium dioxide (TiO2) has been extensively studied and demonstrated to be suitable to enhance the efficiency of solar cell. In this work, TiO2 is doped with silver nanoparticles (AgNP’s) on glass and the Si substrate by using Pulsed Laser Deposition (PLD) technique. UV–vis spectroscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Atomic Force Microscope (AFM), electrical conductivity (σ dc), Hall coefficient (RH), current–voltage (I–V), and capacity–voltage (C–V) characterizations have been used to examine the optical, the morphological, and the electrical properties of the films. It has been found that 5 wt.% (Ag) doped TiO2 thin film has the most effect on efficiency of TiO2:Ag /Si solar cell. The (I–V) characteristics showed that the (TiO2) thin film enhances the efficiency of the (p–n) junction solar cell from 1.26 % pure TiO2 to 7.19 % with doping of noble metal (Ag) representing improvement in the efficiency of solar cell leading to estimate empirical equations between efficiency, extinction coefficient, and energy band gap which have a total fit with the experimental data.  相似文献   
7.
Angiopoietins are ligands for Tie-2 receptors and play important roles in angiogenesis and inflammation. While angiopoietin-1 (Ang-1) inhibits inflammatory responses, angiopoietin-2 (Ang-2) promotes cytokine production and vascular leakage. In this study, we evaluated in vivo and in vitro effects of Escherichia coli lipopolysaccharides (LPS) on angiopoietin expression. Wild-type C57/BL6 mice were injected with saline (control) or E. coli LPS (20 mg/ml ip) and killed 6, 12, and 24 h later. The diaphragm, lung, and liver were excised and assayed for mRNA and protein expression of Ang-1, Ang-2, and Tie-2 protein and tyrosine phosphorylation. LPS injection elicited a severalfold rise in Ang-2 mRNA and protein levels in the three organs. By comparison, both Ang-1 and Tie-2 levels in the diaphragm, liver, and lung were significantly attenuated by LPS administration. In addition, Tie-2 tyrosine phosphorylation in the lung was significantly reduced in response to LPS injection. In vitro exposure to E. coli LPS elicited cell-specific changes in Ang-1 expression, with significant induction in Ang-1 expression being observed in cultured human epithelial cells, whereas significant attenuation of Ang-1 expression was observed in response to E. coli LPS exposure in primary human skeletal myoblasts. In both cell types, E. coli LPS elicited substantial induction of Ang-2 mRNA, a response that was mediated in part through NF-kappaB. We conclude that in vivo endotoxemia triggers functional inhibition of the Ang-1/Tie-2 receptor pathway by reducing Ang-1 and Tie-2 expression and inducing Ang-2 levels and that this response may contribute to enhanced vascular leakage in sepsis.  相似文献   
8.
Silymarin, a potential phytochemical compound obtained from the seeds of Silybum marianum plant has been used as a hepatoprotective agent for more than a decade. So far, eight active components of silymarin flavonolignans have been identified, among which silibinin has been proven the most active. However, it had poor oral bioavailability due to extensive phase II metabolism, low permeability across intestinal epithelial cells, low aqueous solubility, and rapid excretion in bile and urine. Therefore it becomes necessary to understand all its formulation and analytical aspects from past to present, including all of its possible future prospects. In modern research scenario, nanotization strategies of drugs has served as a potential approach to enhance solubility, bioavailability and to develop a robust formulation. Several approaches have been utilized previously to enhance the solubility and bioavailability of silymarin to provide it a robust strength against physical, chemical, and environmental degradation. Nanoscale formulations such as nanoemulsion, nanosuspension, liposomes, and solid–lipid nanoparticles can be used to enhance solubility and to target them to desired cells with minimum harm to normal cells. However, many other approaches exist such as dendrimers, ceramic nanoparticles, and carbon nanotubes, which serve as a great vehicle in drug delivery to transport medicament at target sites. Therefore, the purpose of this review was to develop a better understanding of the problems associated with silymarin and approaches to overcome the difficulties to develop a better and stable formulation for food and pharmaceutical applications.  相似文献   
9.
Self-association of Calcium-binding Protein S100A4 and Metastasis   总被引:1,自引:0,他引:1  
Elevated levels of the calcium-binding protein S100A4 promote metastasis and in carcinoma cells are associated with reduced survival of cancer patients. S100A4 interacts with target proteins that affect a number of activities associated with metastatic cells. However, it is not known how many of these interactions are required for S100A4-promoted metastasis, thus hampering the design of specific inhibitors of S100A4-induced metastasis. Intracellular S100A4 exists as a homodimer through previously identified, well conserved, predominantly hydrophobic key contacts between the subunits. Here it is shown that mutating just one key residue, phenylalanine 72, to alanine is sufficient to reduce the metastasis-promoting activity of S100A4 to 50% that of the wild type protein, and just 2 or 3 specific mutations reduces the metastasis-promoting activity of S100A4 to less than 20% that of the wild type protein. These mutations inhibit the self-association of S100A4 in vivo and reduce markedly the affinity of S100A4 for at least two of its protein targets, a recombinant fragment of non-muscle myosin heavy chain isoform A, and p53. Inhibition of the self-association of S100 proteins might be a novel means of inhibiting their metastasis-promoting activities.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号