首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  2023年   1篇
  2021年   3篇
  2020年   3篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   4篇
  2011年   2篇
  2010年   2篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
The goal of this study was to examine metabolic differences between a novel chronic myelogenous leukemic (CML) cell line, MyL, and a sub-clone, MyL-R, which displays enhanced resistance to the targeted Bcr-Abl tyrosine kinase inhibitor imatinib. 1H nuclear magnetic resonance (NMR) spectroscopy was carried out on cell extracts and conditioned media from each cell type. Both principal component analysis (PCA) and specific metabolite identification and quantification were used to examine metabolic differences between the cell types. MyL cells showed enhanced glucose removal from the media compared to MyL-R cells with significant differences in production rates of the glycolytic end-products, lactate and alanine. Interestingly, the total intracellular creatine pool (creatine + phosphocreatine) was significantly elevated in MyL-R compared to MyL cells. We further demonstrated that the MyL-R cells converted the creatine to phosphocreatine using non-invasive monitoring of perfused alginate-encapsulated MyL-R and MyL cells by in vivo 31P NMR spectroscopy and subsequent HPLC analysis of extracts. Our data demonstrated a clear difference in the metabolite profiles of drug-resistant and sensitive cells, with the biggest difference being an elevation of creatine metabolites in the imatinib-resistant MyL-R cells.  相似文献   
2.
Sepsis is a leading cause of acute kidney injury (AKI) and mortality in children. Understanding the development of pediatric sepsis and its effects on the kidney are critical in uncovering new therapies. The goal of this study was to characterize the development of sepsis-induced AKI in the clinically relevant cecal ligation and puncture (CLP) model of peritonitis in rat pups 17-18 days old. CLP produced severe sepsis demonstrated by time-dependent increase in serum cytokines, NO, markers of multiorgan injury, and renal microcirculatory hypoperfusion. Although blood pressure and heart rate remained unchanged after CLP, renal blood flow (RBF) was decreased 61% by 6 h. Renal microcirculatory analysis showed the number of continuously flowing cortical capillaries decreased significantly from 69 to 48% by 6 h with a 66% decrease in red blood cell velocity and a 57% decline in volumetric flow. The progression of renal microcirculatory hypoperfusion was associated with peritubular capillary leakage and reactive nitrogen species generation. Sham adults had higher mean arterial pressure (118 vs. 69 mmHg), RBF (4.2 vs. 1.1 ml·min(-1)·g(-1)), and peritubular capillary velocity (78% continuous flowing capillaries vs. 69%) compared with pups. CLP produced a greater decrease in renal microcirculation in pups, supporting the notion that adult models may not be the most appropriate for studying pediatric sepsis-induced AKI. Lower RBF and reduced peritubular capillary perfusion in the pup suggest the pediatric kidney may be more susceptible to AKI than would be predicted using adults models.  相似文献   
3.
4.
Neutrophils/polymorphonuclear leukocytes (PMNs), an important component of innate immune system, release extracellular traps (NETs) to eliminate invaded pathogens; however understanding of the role of signaling molecules/proteins need to be elucidated. In the present study role of p38 MAPK and extracellular signal regulated kinase (ERK) against phorbol 12‐myristate 13‐acetate (PMA) induced reactive oxygen species (ROS) generation and NETs formation has been investigated. Human neutrophils were treated with PMA to induce free radical generation and NETs release, which were monitored by NBT reduction and elastase/DNA release, respectively. PMA treatment led to the time dependent phosphorylation of p38 MAPK and ERK in PMNs. Pretreatment of PMNs with SB202190 or U0126 did not significantly reduce PMA induce free radical generation, but prevented NETs release. Pretreatment of PMNs with NADPH oxidase inhibitor (diphenyleneiodonium chloride) significantly reduced free radical generation, p38 MAPK and ERK phosphorylation as well as NETs release, suggesting that p38 MAPK and ERK activation was downstream to free radical generation. The present study thus demonstrates ROS dependent activation of ERK and p38 MAPK, which mediated PMA induced NETs release from human neutrophils. J. Cell. Biochem. 114: 532–540, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
5.
6.
7.
COP1 (constitutive photomorphogenic 1, also known as RFWD2) is a p53-targeting E3 ubiquitin ligase containing RING-finger, coiled-coil, and WD40-repeat domains. Recent studies have identified that COP1 is overexpressed in several cancer types and that increased COP1 expression promotes cell proliferation, cell transformation, and tumor progression. In the present study, we investigated the expression and prognostic value of COP1 in primary gastric cancer. To investigate the role of the COP1 gene in primary gastric cancer pathogenesis, real-time quantitative PCR and western blotting were performed to examine COP1 expression in paired cancerous and matched adjacent noncancerous gastric tissues. The results revealed high COP1 mRNA (P=0.030) and protein (P=0.008) expression in most tumor-bearing tissues compared with the matched adjacent non-tumor tissues. The correlated protein expression analysis revealed a negative correlation between COP1 and p53 in gastric cancer samples (P=0.005, r=-0.572). Immunohistochemical staining of gastric cancer tissues from the same patient showed a high COP1 expression and a low p53 expression. To further investigate the clinicopathological and prognostic roles of COP1 expression, we performed immunohistochemical analysis of 401 paraffin-embedded gastric cancer tissue blocks. The data revealed that high COP1 expression was significantly correlated with T stage (P=0.030), M stage (P=0.048) and TNM stage (P=0.022). Consistent with these results, we found that high expression of COP1 was significantly correlated with poor survival in gastric cancer patients (P<0.001). Cox regression analyses showed that COP1 expression was an independent predictor of overall survival (P<0.001). Our data suggest that COP1 could play an important role in gastric cancer and might serve as a valuable prognostic marker and potential target for gene therapy in the treatment of gastric cancer.  相似文献   
8.
9.
Reactive oxygen species (ROS) are by-products of oxygen metabolism, normally present in low levels inside cells, where they participate in signaling processes. The delicate balance in the continuous cycle of ROS generation and inactivation is maintained by enzymatic and nonenzymatic endogenous systems. Overwhelming production of ROS (by such sources as the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidase, or uncoupled nitric oxide synthase), when inadequately counteracted by destruction through antioxidant systems (such as superoxide dismutase or catalase), leads to a prooxidant state also known as oxidative stress. Increased levels of ROS and markers of oxidative stress have been consistently found in such cardiovascular diseases as atherosclerosis or hypertension, although controversy still exists over the pathophysiological role of oxidative stress in these conditions. ROS can modulate vascular function either by direct oxidative damage or by activating cellular signaling pathways that lead to abnormal contractile, inflammatory, proliferative, or remodeling properties of the blood vessel. Most current research focuses on these processes in arteries, leaving veins, "the other side" of vascular biology, in obscurity. Veins are different structurally and functionally from arteries. Equipped with a smaller smooth muscle layer compared to arteries, but being able to accommodate 70% of the circulating blood volume, veins can modulate cardiovascular homeostasis and contribute significantly to hypertension pathogenesis. Although the reports on the quantitative differences in ROS production in veins compared to arteries had conflicting results, there is a clear qualitative difference in ROS metabolism and utilization between the two vessel types. This review will compare and contrast the current knowledge of ROS metabolism in arteries versus veins in both physiological and pathophysiological conditions. Our understanding of the mechanisms underlying vascular diseases would greatly benefit from a more thorough exploration of the role of veins and venous oxidative stress.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号