首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   3篇
  国内免费   1篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   10篇
  2013年   13篇
  2012年   6篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   10篇
  2007年   8篇
  2006年   2篇
  2005年   4篇
  2003年   2篇
  2002年   1篇
  1975年   1篇
排序方式: 共有87条查询结果,搜索用时 109 毫秒
1.
Physiology and Molecular Biology of Plants - The future CO2 concentration is projected to reach 900–1000 ppm levels by the end of twenty-first century, pertaining to global climatic...  相似文献   
2.
3.
The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.  相似文献   
4.
The development of accurate clinical biomarkers has been challenging in part due to the diversity between patients and diseases. One approach to account for the diversity is to use multiple markers to classify patients, based on the concept that each individual marker contributes information from its respective subclass of patients. Here we present a new strategy for developing biomarker panels that accounts for completely distinct patient subclasses. Marker State Space (MSS) defines “marker states” based on all possible patterns of high and low values among a panel of markers. Each marker state is defined as either a case state or a control state, and a sample is classified as case or control based on the state it occupies. MSS was used to define multi-marker panels that were robust in cross validation and training-set/test-set analyses and that yielded similar classification accuracy to several other classification algorithms. A three-marker panel for discriminating pancreatic cancer patients from control subjects revealed subclasses of patients based on distinct marker states. MSS provides a straightforward approach for modeling highly divergent subclasses of patients, which may be adaptable for diverse applications.  相似文献   
5.
Enterococcus faecalis is a gram‐positive, rod‐shape bacteria responsible for around 65% to 80% of all enterococcal nosocomial infections. It is multidrug resistant (MDR) bacterium resistant to most of the first‐line antibiotics. Due to the emergence of MDR strains, there is an urgent need to find novel targets to develop new antibacterial drugs against Efaecalis. In this regard, we have identified naphthoate synthase (1,4‐dihydroxy‐2‐naphthoyl‐CoA synthase, EC: 4.1.3.36; DHNS) as an anti‐E. faecalis target, as it is an essential enzyme for menaquinone (vitamin K2) synthetic pathway in the bacterium. Thus, inhibiting naphtholate synthase may consequently inhibit the bacteria's growth. In this regard, we report here cloning, expression, purification, and preliminary structural studies of naphthoate synthase along with in silico modeling, molecular dynamic simulation of the model and docking studies of naphthoate synthase with quercetin, a plant alkaloid. Biochemical studies have indicated quercetin, a plant flavonoid as the potential lead compound to inhibit catalytic activity of EfDHNS. Quercetin binding has also been validated by spectrofluorimetric studies in order to confirm the bindings of the ligand compound with EfDHNS at ultralow concentrations. Reported studies may provide a base for structure‐based drug development of antimicrobial compounds against Efaecalis.  相似文献   
6.
7.
An electrochemical biosensor using tyrosinase was constructed for the determination of catechol. The enzyme was extracted from a plant source Amorphophallus companulatus and entrapped in agarose-guar gum composite biopolymer matrix. Catechol was determined by direct reduction of biocatalytically liberated quinone species at -0.1 V versus Ag/AgCl (3M KCl). The response was found to be linear and concentration dependent in the range of 6 x 10(-5) to 8 x 10(-4)M with a lower detection limit of 6 microM. It has reusability up to 20 cycles and a shelf life of more than 2 months when stored at 4 degrees C.  相似文献   
8.
MOTIVATION: Advances in DNA microarray technology and computational methods have unlocked new opportunities to identify 'DNA fingerprints', i.e. oligonucleotide sequences that uniquely identify a specific genome. We present an integrated approach for the computational identification of DNA fingerprints for design of microarray-based pathogen diagnostic assays. We provide a quantifiable definition of a DNA fingerprint stated both from a computational as well as an experimental point of view, and the analytical proof that all in silico fingerprints satisfying the stated definition are found using our approach. RESULTS: The presented computational approach is implemented in an integrated high-performance computing (HPC) software tool for oligonucleotide fingerprint identification termed TOFI. We employed TOFI to identify in silico DNA fingerprints for several bacteria and plasmid sequences, which were then experimentally evaluated as potential probes for microarray-based diagnostic assays. Results and analysis of approximately 150 in silico DNA fingerprints for Yersinia pestis and 250 fingerprints for Francisella tularensis are presented. AVAILABILITY: The implemented algorithm is available upon request.  相似文献   
9.
In an attempt to understand the possible mechanism of chronic ethanol-induced generation of asialoconjugates in the brain and consequent behavioral abnormalities, we have studied the effects of chronic ethanol feeding to rats on the plasma membrane sialidase status in the various subcellular fractions of the brain. We determined sialidase activity using 3H-monosialoganglioside (3H-GM3), 2'-(4-methylumbelliferyl)-alpha-D-N-acetylneuraminic acid (4-MU-NeuAC) substrates and Amplex Red (Sialidase) kit. We determined the plasma membrane sialidase protein by Western blot using the anti-plasma membrane sialidase. We also determined its relative synthetic rate (RSR) by the 60 min incorporation of intracranially infused [35S]-methionine (50 microCi/100 g) into immunoprecipitable plasma membrane sialidase. Chronic ethanol administration stimulated the sialidase activity in the total brain homogenate as well as the myelin and synaptosomal membrane fractions, respectively, in all the three experimental models. Chronic ethanol also increased the concentration of the rat brain plasma membrane sialidase protein relative to that of glyceraldehyde-3-phosphate dehydrogenase by 2.4-, 1.62- and 1.51-fold in the total brain homogenate, myelin and synaptosomal membrane fractions, respectively. These increases in plasma membrane sialidase activity and its protein content were due to concomitant increases in their relative synthetic rates by 115% (p < 0.01) and 72% (p < 0.01) in the myelin and synaptosomal membrane fractions, respectively. Thus, our studies clearly show that chronic ethanol induced deglycosylation of brain gangliosides is in part, due to specific up-regulation of plasma membrane sialidase in the myelin and synaptosomal membrane fractions of the brain. This increase in plasma membrane sialidase may be responsible for chronic-ethanol-induced physiological and neurological impairment in the brain, presumably due to deglycosylation of gangliosides that are essential for crucial cellular and metabolic activities.  相似文献   
10.
B-RAF inhibitors (BRAFi) have been shown to improve rates of overall and progression-free survival in patients with stage IV metastatic melanoma positive for the BRAF V600E mutation. However, the main drawback is the development of verrucal keratosis (hyperkeratotic papules with verruca-like characteristics with benign histological findings) and cutaneous squamous cell carcinomas (cuSCC). We have found upstream mutations in RAS as well as PIK3CA in both verrucal keratosis and cuSCC. This suggests that verrucal keratosis is an early clinical presentation of cuSCC in patients on BRAFi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号