首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  21篇
  2023年   1篇
  2015年   1篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  1996年   2篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1988年   2篇
排序方式: 共有21条查询结果,搜索用时 0 毫秒
1.
In a previous study (Lewis et al., 1990), the response of the respiratory rhythm to a perturbing stimulus was investigated using two different stimulus protocols: phase resetting and fixed-delay stimulation. The first protocol consists of measuring the effects of perturbing an oscillator at different phases of the cycle on the duration of the perturbed cycle. The resulting phase response curves (PRCs) can be used to characterize the properties of the oscillator (Winfree, 1980). A second protocol, fixed-delay stimulation, involves perturbing an oscillator at a fixed latency from the onset of the cycle, repeated every n-th cycle. If a single stimulus produces an effect that lasts longer than a single cycle, complicated responses can be expected from fixed-delay stimulation (Lewis et al., 1987). A simple three-phase model for respiratory rhythm generation based on a hypothesis by Richter and coworkers (1982, 1983, 1986) was investigated in the context of these experimental studies. Phase resetting and fixed-delay stimulation protocols were simulated in the model. PRCs of the model resemble those obtained experimentally: a phase-dependent prolongation or shortening of the inspiratory phase depending on the stimulus magnitude, and a slight prolongation of the expiratory phase. Stimuli delivered to the model repetitively during successive inspiratory periods at a fixed-delay produced various combinations of shortened and prolonged cycles, similar to those observed in the experiments. However, the marked increases in cycle duration observed in the experiments during, as well as after, stimulation were not evident in the model. These comparisons suggest that (1) PRCs may not be an adequate way to evaluate certain models of rhythmogenesis, and (2) to improve the present simplified formulation of the three-phase model of the respiratory oscillator, time-varying stimulus dependent effects should be incorporated.  相似文献   
2.
In cats anesthetized with sodium pentobarbital, a supramaximal 40-Hz, 30-s train to the cervical sympathetic trunk, during block of ganglionic cholinergic transmission with hexamethonium and scopolamine, produced a delayed, slow, small amplitude contraction of the nictitating membrane that persisted for several minutes after the end of the stimulus train. The post-stimulus component of the response was due to afterdischarge of the ganglion cells, since section of the post-ganglionic axons at the end of the train resulted in elimination of this component. The amplitude of the slow nictitating membrane response was enhanced in a dose-dependent manner by i.v. injection of naloxone. The enhancement was detectable at a dose as low as 1 microgram/kg and was maximal at 10 micrograms/kg. During continuous preganglionic stimulation at 40 Hz, the amplitude of the slow nictitating membrane response reached a peak in 2-4 min and then faded with time until it became undetectable. Time for 90% decay was 82 +/- 5 min (n = 18). The nictitating membrane response to postganglionic nerve stimulation was not modified by prolonged preganglionic stimulation. In three cats, the cervical sympathetic trunk was split into two bundles and one bundle was stimulated continuously at 40 Hz until the slow response disappeared. At this time stimulation of the unconditioned bundle evoked a slow response of normal appearance. This suggests that the process underlying the fade involves only the conditioned axons. Recovery from the fade was slow, the response approaching control by 24 h post-stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
3.
4.
Large changes in neuronal gene expression occur in adult peripheral neurons after axonal transection. In the rat superior cervical ganglion, for example, neurons that do not normally express vasoactive intestinal peptide (VIP) or galanin do so after postganglionic nerve transection. These effects of axotomy could result from a number of aspects of the surgical procedure. To test the idea that the important variable might be the disconnection of axotomized neuronal cell bodies from their target tissues, we examined the effects of producing such a disconnection by means of the compound 6-hydroxydopamine (6-OHDA), a neurotoxin that causes degeneration of sympathetic varicosities and avoids many of the complications of surgery. Two days after 6-OHDA treatment, VIP and galanin immunoreactivities had increased two- and 40-fold, respectively. Nevertheless, these increases were substantially smaller than the 30- and 300-fold changes seen after surgical axotomy. When expression of VIP and galanin was examined at the mRNA level, however, comparable increases were found after either procedure. The results indicate that chemical destruction of sympathetic varicosities produces an equivalent signal for increasing VIP and galanin mRNA as does axonal transection. The differences in the neuropeptide levels achieved suggests that peptide expression after nerve transection is regulated both at the mRNA and protein levels. © 1996 John Wiley & Sons, Inc.  相似文献   
5.
Mutations in isocitrate dehydrogenases 1 and 2 (IDH1 and IDH2) have been shown to be present in most World Health Organization grade 2 and grade 3 gliomas in adults. These mutations are associated with the accumulation of 2-hydroxyglutarate (2HG) in the tumor. Here we report the noninvasive detection of 2HG by proton magnetic resonance spectroscopy (MRS). We developed and optimized the pulse sequence with numerical and phantom analyses for 2HG detection, and we estimated the concentrations of 2HG using spectral fitting in the tumors of 30 subjects. Detection of 2HG correlated with mutations in IDH1 or IDH2 and with increased levels of D-2HG by mass spectrometry of the resected tumors. Noninvasive detection of 2HG may prove to be a valuable diagnostic and prognostic biomarker.  相似文献   
6.
The effect of the muscarinic receptor antagonist AF-DX 116 on the inhibitory action of muscarinic agonists and on responses mediated by nicotinic or muscarinic ganglionic transmission was studied in the superior cervical ganglion of the anesthetized cat. The postganglionic compound action potential evoked by cervical sympathetic trunk stimulation was depressed by methacholine or acetylcholine (ACh) injected into the ganglionic arterial supply. The depression was blocked by AF-DX 116. The compound action potentials evoked by preganglionic stimulus trains were also depressed when the intratrain frequency was 2 Hz or greater. This intratrain depression was, however, insensitive to AF-DX 116. The anticholinesterase drug physostigmine markedly enhanced the intratrain depression of the compound action potential. This effect was reversed by AF-DX 116. During nicotinic receptor block with hexamethonium, preganglionic stimulus trains with intratrain frequencies of 5 Hz or greater produced nicitating membrane contractions that could be blocked by the M1 muscarinic receptor antagonist pirenzepine. The amplitude of the contractions increased with frequency and reached a maximum at 20-40 Hz. AF-DX 116 had no effect on these responses. After administration of physostigmine, the amplitude of the nictitating membrane responses decreased with increasing intratrain frequency. AF-DX 116 reversed this effect. The data suggest that, in the superior cervical ganglion, AF-DX 116 sensitive muscarinic receptors which depress synaptic transmission are activated by exogenous agonists but not by the ACh released by the preganglionic axon terminals unless cholinesterase activity is inhibited.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
The effect on heart rate of close i.a. injection of neurotensin (NT), substance P (SP), and vasoactive intestinal peptide (VIP) into the decentralized right stellate ganglion was tested in anaesthetized spinal cats. These peptides are present in the stellate ganglion and may mediate the stellate ganglion cell excitation underlying a previously described slow cardioacceleration evoked by preganglionic stimulation during block of cholinergic transmission. NT (Tyr11-NT) at doses of 25-200 micrograms produced increases in heart rate of 10-125 beats/min (bpm) and of slow time course. At the dose of 100 micrograms, NT produced a cardioacceleration of 56 +/- 8.4 bpm (mean +/- SEM, n = 13) with an onset latency of 23 +/- 4 s, a slow rise to peak (rise time 62 +/- 4.5 s), and a half decay of 167 +/- 14 s. A cardioacceleration of comparable magnitude (78 +/- 3.8 bpm) caused by close i.a. administration of acetylcholine (100 micrograms, n = 13) had an onset latency of 2 +/- 1 s, a fast rise to a sharp peak (rise time 3 +/- 1 s), and a half decay of 23 +/- 4 s. The analogues, Phe11-NT and Trp11-NT, as well as the stereoisomer, D-Tyr11-NT, had no effect on heart rate when injected at doses up to 400 micrograms. The NT-evoked cardioacceleration was blocked by propranolol or by section of the inferior cardiac nerve and may therefore be attributed to prolonged excitation of stellate ganglion cells. Administration of hexamethonium and atropine was without effect on the NT response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
8.
9.
Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused (13)C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo.  相似文献   
10.
Abstract: These experiments investigate the effect of block, by colchicine, of fast axonal transport in the cat's cervical sympathetic trunk (CST) on the superior cervical ganglion's choline acetyltransferase (ChAT) enzyme activity, acetylcholine (ACh) content, and ACh release. Electron microscopy on the segment of the CST exposed to colchicine 1 or 4 days earlier showed disappearance of microtubules and accumulation of vesicles and smooth membrane tubules but no disruption of the axonal cytomatrix. At 4 days following colchicine treatment, the number and size of synaptic boutons per grid square in the ganglion ipsilateral to the colchicine-treated CST were similar to those in the control ganglion. At 2 and 4 days following exposure of the CST to colchicine, ChAT activity in the ipsilateral ganglion was reduced to 76 ± 8 and 54 ± 6% of control values, respectively. ACh stores in the ganglia were also reduced (to 81 ± 6% of control values at 2 days and to 51 ± 5% of control values at 4 days). Ganglionic transmission and its sensitivity to blockade by hexamethonium during 2-Hz CST stimulation were not impaired at day 4 postcolchicine. ACh release evoked by 2-Hz stimulation of colchicine-treated axons was similar to release from untreated axons, despite the decrease in the ganglionic ACh content. In contrast, ACh release evoked by 20-Hz stimulation was depressed. The amount of ACh released during 5-Hz stimulation in the presence of vesamicol by the terminals of colchicine-treated axons was similar to that released by the terminals of untreated axons. These results suggest the following conclusions: (a) Colchicine-sensitive fast axonal transport contributes significantly to maintaining ChAT stores in preganglionic axon terminals. (b) The half-life of ChAT in sympathetic preganglionic terminals is ~4 days. (c) One consequence of colchicine-induced block of axonal transport is a reduced ACh content of preganglionic nerve terminals. (d) This decrease in ACh content appears to be the result of a loss in a reserve transmitter pool, whereas the size of the readily releasable compartment is maintained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号