首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
  2021年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2008年   3篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
We report the isolation and characterization of two new genomic loci corresponding to the mouse Dishevelled (Dvl) genes Dvl2 and Dvl3. The Dvl genes are homologs of the Drosophila dsh segment polarity gene, and are involved in the Wnt/wingless signal transduction pathway. Dvl2 and Dvl3 genomic clones were isolated from a mouse 129 strain λFIXII genomic library and have identical exon/intron organization to Dvll. All three Dishevelled genes span 15 exons and 14 introns and have a number of conserved splice junction sites.  相似文献   
2.
3.
The murine dishevelled 2 (Dvl2) gene is an ortholog of the Drosophila segment polarity gene Dishevelled, a member of the highly conserved Wingless/Wnt developmental pathway. Dvl2-deficient mice were produced to determine the role of Dvl2 in mammalian development. Mice containing null mutations in Dvl2 present with 50% lethality in both inbred 129S6 and in a hybrid 129S6-NIH Black Swiss background because of severe cardiovascular outflow tract defects, including double outlet right ventricle, transposition of the great arteries and persistent truncus arteriosis. The majority of the surviving Dvl2(-/-) mice were female, suggesting that penetrance was influenced by sex. Expression of Pitx2 and plexin A2 was attenuated in Dvl2 null mutants, suggesting a defect in cardiac neural crest development during outflow tract formation. In addition, approximately 90% of Dvl2(-/-) mice have vertebral and rib malformations that affect the proximal as well as the distal parts of the ribs. These skeletal abnormalities were more pronounced in mice deficient for both Dvl1 and Dvl2. Somite differentiation markers used to analyze Dvl2(-/-) and Dvl1(-/-);Dvl2(-/-) mutant embryos revealed mildly aberrant expression of Uncx4.1, delta 1 and myogenin, suggesting defects in somite segmentation. Finally, 2-3% of Dvl2(-/-) embryos displayed thoracic spina bifida, while virtually all Dvl1/2 double mutant embryos displayed craniorachishisis, a completely open neural tube from the midbrain to the tail. Thus, Dvl2 is essential for normal cardiac morphogenesis, somite segmentation and neural tube closure, and there is functional redundancy between Dvl1 and Dvl2 in some phenotypes.  相似文献   
4.
Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3 −/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3 −/− and LtapLp/+ mutants, Dvl3 +/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant.  相似文献   
5.
The kinetics of binding of short Tat peptides and an aminoglycoside molecule to the human immunodeficiency virus-type 1(HIV-1) TAR RNA and to a bulge mutant analogue (MTAR) is studied in a biosensor format by monitoring the time course of the response in a series resonance frequency, using an acoustic wave biosensor. Association and dissociation rate constants are evaluated by fitting the experimental data to a simple 1:1 (Langmuir) model. Kinetic rate and equilibrium dissociation constants show that MTAR-peptide complexes are subject to a higher dissociation rate and are less stable compared to the corresponding TAR-peptide complexes. In addition, longer peptides display enhanced discrimination ability than a shorter peptide according to the equilibrium dissociation constants evaluated using this technique. K(D) values for TAR-Tat vs. MTAR-Tat complexes are 2.6 vs. 3.8 microM for Tat-12, 0.87 vs. 4.3 microM for Tat-18 and 0.93 vs. 1.6 microM for Tat-20. The equilibrium dissociation constant for TAR-neomycin complex is 12.4 microM and it is comparable to the values obtained from non-biosensor type assays. These findings are in parallel with those cited in the literature and the results from this study underline the potential of the acoustic wave sensor for detailed biophysical analysis of nucleic acid-ligand binding.  相似文献   
6.
A spirocyclic class of ROMK inhibitors was developed containing a structurally diverse heterocyclic sulfone moiety and spirocyclic core starting from lead 1. These compounds not only displayed exquisite ROMK potency but significantly improved selectivity over hERG. The lead compounds were found to have favorable pharmacokinetic properties and displayed robust diuretic, natriuretic and blood pressure lowering effects in spontaneously hypertensive rats.  相似文献   
7.
8.
The nervous system is enormously complex, yet the number of cues that control axonal growth is surprisingly meager. Posttranslational modifications amplify diversity, but the degree to which they are employed is unclear. Here, we show that Furin and SKI-1 combine with autocatalytic cleavage and a disulfide bridge to generate four membrane-bound and three soluble forms of the repulsive guidance molecule (RGMa). We provide in vivo evidence that these proprotein convertases are involved in axonal growth and that RGMa cleavage is essential for Neogenin-mediated outgrowth inhibition. Surprisingly, despite no sequence homology, N- and C-RGMa fragments bound the same Fibronectin-like domains in Neogenin and blocked outgrowth. This represents an example in which unrelated fragments from one molecule inhibit outgrowth through a single receptor domain. RGMa is a tethered membrane-bound molecule, and proteolytic processing amplifies RGMa diversity by creating soluble versions with long-range effects as well.  相似文献   
9.
The dependence receptor Neogenin and its ligand, the repulsive guidance molecule a (RGMa), regulate apoptosis and axonal growth in the developing and the adult central nervous system (CNS). Here, we show that this pathway has also a critical role in neuronal death following stroke, and that providing RGMa to neurons blocks Neogenin-induced death. Interestingly, the Neogenin pro-death function following ischemic insult depends on Neogenin association with lipid rafts. Thus, a peptide that prevents Neogenin association with lipid rafts increased neuronal survival in several in vitro stroke models. In rats, a pro-survival effect was also observed in a model of ocular ischemia, as well as after middle cerebral artery occlusion (MCAO). Treatments that prevented Neogenin association with lipid rafts improved neuronal survival and the complexity of the neuronal network following occlusion of the middle artery. Toward the development of a treatment for stroke, we developed a human anti-RGMa antibody that also prevents Neogenin association with lipid rafts. We show that this antibody also protected CNS tissue from ischemic damage and that its application resulted in a significant functional improvement even when administrated 6 h after artery occlusion. Thus, our results draw attention to the role of Neogenin and lipid rafts as potential targets following stroke.Ischemic stroke is of major public health significance as it may lead to permanent loss-of-functions or death. This is due to the pronounced susceptibility of adult central nervous system (CNS) neurons to undergo apoptotic death when injured. Many clinical trials have focused on reducing excitotoxicity to ameliorate neuronal death in the penumbra.1 However, the short duration of excitotoxicity following stroke does not allow for effective treatment in the clinic. There is emerging consensus that a better therapy should be obtained by (i) targeting the molecular mechanisms of apoptosis and (ii) using this knowledge to develop effective treatments that maintain adequate brain functions.2The transmembrane protein Neogenin is a dependence receptor that causes death or survival depending on ligand (repulsive guidance molecule a (RGMa)) absence or presence, respectively.3, 4 In cell cultures, as well as in the developing chick brain, Neogenin induces apoptosis in the absence of RGMa.3 Cell survival can be rescued either by addition of RGMa or by Neogenin silencing. We recently have demonstrated that RGMa can also rescue neuronal cell death following traumatic CNS injury.5 When retinal ganglion cell (RGC) axons were severed by optic nerve crush, injection of RGMa into the vitreous significantly increased cell survival.5 Thus, the Neogenin/RGMa pathway is involved in neuronal cell death following injury. More recent studies revealed that this pathway is involved in axonal regeneration following stroke. RGMa is upregulated in the penumbra of human patients who died of stroke.6 Interestingly, electrical stimulation downregulates RGMa expression, which correlates with an improved functional outcome following middle cerebral artery occlusion (MCAO).7, 8 Although Neogenin has been shown to be expressed in the injured brain following stroke,9 there is no direct evidence that it may have a role in the pathology of this disease.The plasma membrane of cells contains a combination of glycosphingolipids and protein receptors organized in glycolipoprotein microdomains, termed lipid rafts.10 One key difference between lipid rafts and the plasma membranes from which they are derived is lipid composition. Lipid rafts generally contain twice the amount of cholesterol than that found in the surrounding bilayer.10 We recently discovered that RGMa contains three sites of interaction with Neogenin.11 Two of these sites interact with Neogenin to block axonal growth, whereas the third site, located in the most N-terminal portion of RGMa (N-Raft), binds the Neogenin immunoglobulin domain (4Ig), to regulate recruitment of Neogenin into lipid rafts. Treatment with either 4Ig or a newly generated monoclonal antibody (mAb) abolished Neogenin-induced cell death suggesting that Neogenin recruitment into rafts is essential for Neogenin-mediated apoptosis. In this study, we assessed the neuroprotective effects of RGMa, as well as, the effect of altering Neogenin association with lipid rafts after cerebral– and retinal–ischemic injuries.  相似文献   
10.

Objective

Demographic and health surveys, immunization coverage surveys and administrative data often divergently estimate vaccination coverage, which hinders pinpointing districts where immunization services require strengthening. We assayed vaccination coverage in three regions in Ethiopia by coverage surveys and linked serosurveys.

Methods

Households with children aged 12–23 (N = 300) or 6–8 months (N = 100) in each of three districts (woredas) were randomly selected for immunization coverage surveys (inspection of vaccination cards and immunization clinic records and maternal recall) and linked serosurveys. IgG-ELISA serologic biomarkers included tetanus antitoxin ≥ 0.15 IU/ml in toddlers (receipt of tetanus toxoid) and Haemophilus influenzae type b (Hib) anti-capsular titers ≥ 1.0 mcg/ml in infants (timely receipt of Hib vaccine).

Findings

Coverage surveys enrolled 1,181 children across three woredas; 1,023 (87%) also enrolled in linked serosurveys. Administrative data over-estimated coverage compared to surveys, while maternal recall was unreliable. Serologic biomarkers documented a hierarchy among the districts. Biomarker measurement in infants provided insight on timeliness of vaccination not deducible from toddler results.

Conclusion

Neither administrative projections, vaccination card or EPI register inspections, nor parental recall, substitute for objective serological biomarker measurement. Including infants in serosurveys informs on vaccination timeliness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号