首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9919篇
  免费   679篇
  国内免费   2篇
  2022年   56篇
  2021年   141篇
  2020年   54篇
  2019年   105篇
  2018年   138篇
  2017年   143篇
  2016年   196篇
  2015年   299篇
  2014年   369篇
  2013年   553篇
  2012年   515篇
  2011年   578篇
  2010年   379篇
  2009年   361篇
  2008年   500篇
  2007年   509篇
  2006年   480篇
  2005年   478篇
  2004年   521篇
  2003年   481篇
  2002年   402篇
  2001年   310篇
  2000年   300篇
  1999年   278篇
  1998年   124篇
  1997年   93篇
  1996年   81篇
  1995年   81篇
  1994年   61篇
  1993年   80篇
  1992年   140篇
  1991年   149篇
  1990年   145篇
  1989年   126篇
  1988年   119篇
  1987年   133篇
  1986年   112篇
  1985年   93篇
  1984年   75篇
  1983年   52篇
  1982年   54篇
  1981年   49篇
  1979年   58篇
  1978年   51篇
  1977年   56篇
  1974年   54篇
  1973年   58篇
  1970年   38篇
  1969年   47篇
  1968年   47篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
1.
Radioisotopes and fluorescent compounds are frequently used for RNA labeling but are unsuitable for clinical studies of RNA drugs because of the risk from radiation exposure or the nonequivalence arising from covalently attached fluorophores. Here, we report a practical phosphoramidite solid-phase synthesis of 18O-labeled RNA that avoids these disadvantages, and we demonstrate its application to quantification and imaging. The synthesis involves the introduction of a nonbridging 18O atom into the phosphate group during the oxidation step of the synthetic cycle by using 18O water as the oxygen donor. The 18O label in the RNA was stable at pH 3–8.5, while the physicochemical and biological properties of labeled and unlabeled short interfering RNA were indistinguishable by circular dichroism, melting temperature and RNA-interference activity. The 18O/16O ratio as measured by isotope ratio mass spectrometry increased linearly with the concentration of 18O-labeled RNA, and this technique was used to determine the blood concentration of 18O-labeled RNA after administration to mice. 18O-labeled RNA transfected into human A549 cells was visualized by isotope microscopy. The RNA was observed in foci in the cytoplasm around the nucleus, presumably corresponding to endosomes. These methodologies may be useful for kinetic and cellular-localization studies of RNA in basic and pharmaceutical studies.  相似文献   
2.
3.
5,6-Dihydroxyindole (5,6DHI) and 5,6-dihydroxyindole-2-carboxylic acid (5,6DHI2C) are ultimate precursors of the black melanin, eumelanin. These indolic metabolites and their O-methyl derivatives are excreted in urine of melanoma patients at high levels and of healthy persons at low levels. We describe here a simplified procedure for preparing milligram to subgram quantities of 5,6DHI and 5,6DHI2C and their O-methyl derivatives. Dopachrome generated in situ by ferricyanide oxidation of dopa at pH 6.5 underwent spontaneous decarboxylation to give 5,6DHI in 40% isolation yield, while treatment of dopachrome with alkali at pH 13 afforded 5,6DHI2C in 38% isolation yield. Two isomeric O-methyl derivatives of 5,6DHI were prepared by treatment with diazomethane, while those of 5,6DHI2C were prepared by treatment with diazomethane followed by alkaline hydrolysis of the methyl esters. 5,6DHI and 6-hydroxy-5-methoxyindole were also obtained by heating the corresponding carboxylic acids in decalin. 5-Hydroxy-6-methoxyindole and 6-hydroxy-5-methoxyindole-2-carboxylic acid could also be prepared by debenzylation of the commercially available O-benzyl derivatives.  相似文献   
4.
5.
The authors established the amino acid substitutions determining G3m(s) and G3m(t) specificities, which characterize Mongoloid populations, by sequence analysis of the Fc region of a myeloma protein (Jir). By comparing the amino acid sequences of the IgG3 (Jir) and the other IgG subclasses analyzed to date, it was found that G3m(s) was an isoallotype specified by an amino acid substitution at position 435; i.e., whereas the subclasses IgG1, IgG2, and IgG4 had histidine in common, G3m(s-) had arginine in this position. This was also confirmed by the observation that the Fc fragment in question bound to protein A. It was also established that the amino acid at position 379 of G3m(t-) IgG3 and the other subclasses was valine, whereas methionine in this position was specific for G3m(t+). In addition, the amino acids at position 339 of G3m(u-) IgG3 Jir was threonine, and at position 296 of G3m(g-) IgG3 Jir was tyrosine. These findings are not in accord with the hitherto postulated relations of alanine and phenylalanine to G3m(u-) and G3m(g-), respectively. Finally, this study showed that a large number of substitutions occurred at positions 384 through 389, which suggests that many specificities of the G3m(b) group occur on IgG3 proteins.  相似文献   
6.
7.
The procedure for immunochemical adsorption of vesicles with specific antigen on their outer surfaces was improved. When microsomal vesicles were mixed with Staphylococcus aureus cells coated with the antibody against NADPH-cytochrome c reductase, more than 90% of the enzyme activity was adsorbed on the cell, whereas, only about 10% of the activity was adsorbed on cells coated with the same amount of anti-ovalbumin antibody. NADH-cytochrome c reductase and aldehyde dehydrogenase activities were adsorbed on the cell to the same extent as was NADPH-cytochrome c reductase activity. Under this condition, there was no adsorption of the activities of the marker enzymes of lysosomes and Golgi apparatus, whereas large amounts of the activities of the plasma membrane enzymes were adsorbed. The specific activity of NADPH-cytochrome c reductase in the adsorbed vesicles from the microsomal fractions increased considerably. In contrast, marker enzymes of the Golgi or of the plasma membranes could be enriched in unadsorbed vesicles from the Golgi fractions.  相似文献   
8.
Oxidation of thymine with O2 was promoted by copper(I) ion generated from reaction of L-ascorbic acid (AA) with copper (II) ion. The main oxidation products were thymine glycol (TG) and N-formyl-N'-pyruvylurea (FPU). At higher concentration of O2, formation of FPU was favored, while TG was dominant at higher Cu(II) ion and lower O2 concentrations. Reaction mechanism involving hydroxy thyminyl radical was proposed.  相似文献   
9.
The nucleotide sequences of the cloned human salivary and pancreatic α-amylase cDNAs correspond to the continuous mRNA sequences of 1768 and 1566 nucleotides, respectively. These include all of the amino acid coding regions. Salivary cDNA contains 200 bp in the 5′-noncoding region and 32 in the 3′-noncoding region. Pancreatic cDNA contains 3 and 27 bp of 5′- and 3′-noncoding regions, respectively. The nucleotide sequence humology of the two cDNAs is 96% in the coding region, and the predicted amino acid sequences are 94% homologous.Comparison of the sequences of human α-amylase cDNAs with those previously obtained for mouse α-amylase genes (Hagenbuchle et al., 1980; Schibler et al., 1982) showed the possibility of gene conversion between the two genes of human α-amylase.  相似文献   
10.
Starfish waste has been shown to be an effective compost material not only in the promotion of plant growth but also in terms of having insecticidal activity. In the present study, plant growth regulation by chemicals from starfish was examined. The aqueous fraction from a hot water extract of the starfish Asterias amurensis Lütken showed plant-growth activity, while the aqueous fraction from a methanol extract inhibited growth of Brassica campestris. The lipophilic fraction from the methanol extract also exhibited a plant growth-promoting effect. The active components from each extract were identified. Asterubine from the hot water extract promoted plant growth. A ceramide from the lipophilic fraction showed root growth promoting effect, and three glucocerebrosides had promotive effects on the entire plant. Asterosaponins were identified as the main growth inhibitors in the aqueous fraction of the methanol extract. These active compounds from starfish waste could be analyzed as potential plant growth regulators in agricultural applications in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号