首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   5篇
  2022年   1篇
  2021年   3篇
  2016年   1篇
  2014年   1篇
  2013年   13篇
  2012年   2篇
  2011年   4篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1998年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有64条查询结果,搜索用时 46 毫秒
1.
l-Leucine-α-ketoglutarate (α-KGA) transaminase from Acetobacter suboxydans was purified to the state of homogeneity by the criteria of ultracentrifugation and electrophoresis on a cellulose acetate membrane. The molecular weight was about 80,000 and one mole of pyridoxal 5′-phosphate was bound per mole of enzyme as a coenzyme. The enzyme exhibited absorption maxima at 280, 337 and 414 nm.

The branched-chain amino acids and α-KGA were specific as amino donors and an acceptor. l-Leucine-α-KGA transaminase is suggested to correspond to the enzyme so-called Transaminase B.  相似文献   
2.
Distribution of NAD phosphorylating reactions, phosphorylation through NAD kinase and phosphotransferase, was investigated. NAD kinase activity was distributed rather widely in bacteria, whereas phosphotransferase activity with p-NPP and NAD was limited to a few genera. Proteus mirabilis showed strong activity of phosphotransferase besides NAD kinase activity.

Partial purification of the phosphotransferase was attempted. The enzyme preparation possessed phosphatase activity as well as phosphotransferase activity. Phosphorylation of NAD proceeded maximally under the conditions below pH 4.0. Cu2+ showed stimulating effect on the activity. Besides p-NPP and phenylphosphate, various nucleotides, especially 2′ (or 3′) isomers, served as excellent phosphoryl donors, and various kinds of nucleosides and nucleotides were phosphorylated to form nucleoside monophosphates and nucleoside diphosphates.  相似文献   
3.
The mismatch repair system repairs mismatched base pairs, which are caused by either DNA replication errors, DNA damage, or genetic recombination. Mismatch repair begins with the recognition of mismatched base pairs in DNA by MutS. Protein denaturation and limited proteolysis experiments suggest that Thermus thermophilus MutS can be divided into three structural domains as follows: A (N-terminal domain), B (central domain), and C (C-terminal domain) (Tachiki, H., Kato, R., Masui, R., Hasegawa, K., Itakura, H., Fukuyama, K., and Kuramitsu, S. (1998) Nucleic Acids Res. 26, 4153-4159). To investigate the functions of each domain in detail, truncated genes corresponding to the domains were designed. The gene products were overproduced in Escherichia coli, purified, and assayed for various activities. The MutS-MutS protein interaction site was determined by size-exclusion chromatography to be located in the B domain. The B domain was also found to possess nonspecific double-stranded DNA-binding ability. The C domain, which contains a Walker's A-type nucleotide-binding motif, demonstrated ATPase activity and specific DNA recognition of mismatched base pairs. These ATPase and specific DNA binding activities were found to be dependent upon C domain dimerization.  相似文献   
4.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker’s yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.  相似文献   
5.
Glutamine production with bacterial glutamine synthetase (GS) and the sugar-fermenting system of baker’s yeast for ATP regeneration was investigated by determining the product yield obtained with the energy source for ATP regeneration (i.e., glucose) for yeast fermentation. Fructose 1,6-bisphosphate was accumulated temporarily prior to the formation of glutamine in mixtures which consisted of dried yeast cells, GS, their substrate (glucose and glutamate and ammonia), inorganic phosphate, and cofactors. By an increase in the amounts of GS and inorganic phosphate, the amounts of glutamine formed increased to 19 to 54 g/liter, with a yield increase of 69 to 72% based on the energy source (glucose) for ATP regeneration. The analyses of sugar fermentation of the yeast in the glutamine-producing mixtures suggested that the apparent hydrolysis of ATP by a futile cycle(s) at the early stage of glycolysis in the yeast cells reduces the efficiency of ATP utilization. Inorganic phosphate inhibits phosphatase(s) and thus improves glutamine yield. However, the analyses of GS activity in the glutamine-producing mixtures suggested that the higher concentration of inorganic phosphate as well as the limited amount of ATP-ADP caused the low reactivity of GS in the glutamine-producing mixtures. A result suggestive of improved glutamine yield under the conditions with lower concentrations of inorganic phosphate was obtained by using a yeast mutant strain that had low assimilating ability for glycerol and ethanol. In the mutant, the activity of the enzymes involved in gluconeogenesis, especially fructose 1,6-bisphosphatase, was lower than that in the wild-type strain.Glutamine is one of the most important compounds in nitrogen metabolism; it is not only a constituent of proteins but is also a donor of the amino (amido) moiety in the biosynthesis of other amino acids, purines, pyrimidines, pyridine coenzymes, and complex carbohydrates. Glutamine is also used in the treatment of gastric ulcers and has been produced commercially by direct fermentation with certain bacteria (610).In recent years, enzymatic synthesis has come to rival direct fermentation as a means of producing amino acids. In the case of glutamine, however, the need for a stoichiometric supply of ATP for the endoergonic reaction of glutamine synthetase (GS) precludes the development of an economically valuable method, unless ATP can be regenerated and recycled.Processes for the production of various substances using dried yeast cells as an enzyme source were established by Tochikura and colleagues (2, 4, 16, 1820). The processes are driven by the chemical energy of ATP released by the alcoholic fermentation by the yeast, which has been wasted in alcoholic brewing (17). Tochikura and colleagues also designed a process in which the yeast fermentation of sugar is combined with an endoergonic reaction catalyzed by an enzyme from a different microorganism (3). The results suggest that the process offers the possibility of producing many compounds at a high yield by using various biosynthetic reactions and high concentrations of substrates. Tochikura et al. introduced the general idea of coupled fermentation with energy transfer for the process; its principle is indicated in Fig. Fig.1,1, with glutamine production as an example. Open in a separate windowFIG. 1Scheme of glutamine production by the coupled fermentation with energy transfer method. ∗1, glycolytic pathway is abridged. ∗2, inorganic phosphate (Pi) is recycled.In the process of coupled fermentation with energy transfer, a catalytic amount of ATP is regenerated with the energy of sugar fermented by yeast, in the form of baker’s yeast (4, 16, 18, 19, 23). The energy-utilizing system for the synthesis can involve the enzyme(s) of yeast itself or those of other organisms. It should be noted that, from another point of view, the use of the energy-utilizing system results in ADP regeneration to complete the fermentation of glucose, and that, if there is no ADP regeneration, the yeast fermentation of sugar can proceed only as follows, in the presence of inorganic phosphate (the Harden-Young effect of inorganic phosphate [1]), 2 · glucose + 2 · inorganic phosphate → fructose 1,6-bisphosphate (FBP) + 2 · C2H5OH + 2 · CO2 (Harden-Young equation), where ADP regeneration for the fermentation of 1 mol of glucose is carried out by the phosphorylation of another mole of glucose to FBP.We previously reported glutamine production, obtained by employing a combination of baker’s yeast cells and GS from Gluconobacter suboxydans, as the first application of the coupled fermentation with energy transfer method for the production of a nonphosphorylated compound (12, 13). In addition, we achieved high-yield glutamine production by using the Corynebacterium glutamicum (Micrococcus glutamicus) enzyme and larger amounts of the substrates (15). The maximum amounts of glutamine formed (23 to 25 g/liter) and the yield based on glutamate (50 to 100%) were to some extent satisfactory, but the yield based on the energy source (glucose) for ATP regeneration was not satisfactory (about 40% of the theoretical value; 2 mol of glutamine can be formed when 1 mol of glucose is consumed).In the present study, we examined the characteristics of glutamine production regarding product yield based on the energy source for ATP regeneration and regarding the reactivity of GS during glutamine production, which is closely related to the product yield. The results of preliminary attempts to improve glutamine production are also described. In these experiments, a yeast mutant which has a low assimilating ability for glycerol and/or ethanol was used.  相似文献   
6.
7.
Chitinase I (CHI1) of Bacillus circulans KA-304 forms protoplasts from Schizophyllum commune mycelia when the enzyme is combined with α-1,3-glucanase of B. circulans KA-304. CHI1 consists of an N-terminal unknown region and a C-terminal catalytic region classified into the glycoside hydrolase family-19 type. An N-terminal region-truncated mutant of CHI 1 (CatCHI1), which was expressed in Escherichia coli Rosetta-gami B (DE3), lost colloidal chitin- and powder chitin-binding activities. The colloidal chitin- and the powder chitin-hydrolyzing activities of CatCHI1 were lower than those of CHI1, and CatCHI1 was not effective in forming the protoplast. A fusion protein of the N-terminal region of CHI1 and green fluorescent protein (Nterm-GFP) was expressed in E. coli, and the fusion protein was adsorbed to colloidal chitin, powder chitin, and chitosan. Fluorescence microscopy analysis showed that Nterm-GFP bound to the S. commune cell-wall.  相似文献   
8.
Glutaminase from Stenotrophomonas maltophilia NYW-81 was purified to homogeneity with a final specific activity of 325 U/mg. The molecular mass of the native enzyme was estimated to be 41 kDa by gel filtration. A subunit molecular mass of 36 kDa was measured with SDS-PAGE, thus indicating that the native enzyme is a monomer. The N-terminal amino acid sequence of the enzyme was determined to be KEAETQQKLANVVILATGGTIA. Besides l-glutamine, which was hydrolyzed with the highest specific activity (100%), l-asparagine (74%), d-glutamine (75%), and d-asparagine (67%) were also hydrolyzed. The pH and temperature optima were 9.0 and approximately 60°C, respectively. The enzyme was most stable at pH 8.0 and was highly stable (relative activities from 60 to 80%) over a wide pH range (5.0–10.0). About 70 and 50% of enzyme activity was retained even after treatment at 60 and 70°C, respectively, for 10 min. The enzyme showed high activity (86% of the original activity) in the presence of 16% NaCl. These results indicate that this enzyme has a higher salt tolerance and thermal stability than bacterial glutaminases that have been reported so far. In a model reaction of Japanese soy sauce fermentation, glutaminase from S. maltophilia exhibited high ability in the production of glutamic acid compared with glutaminases from Aspergillus oryzae, Escherichia coli, Pseudomonas citronellolis, and Micrococcus luteus, indicating that this enzyme is suitable for application in Japanese soy sauce fermentation.  相似文献   
9.
Vps13 family proteins are proposed to function in bulk lipid transfer between membranes, but little is known about their regulation. During sporulation of Saccharomyces cerevisiae, Vps13 localizes to the prospore membrane (PSM) via the Spo71–Spo73 adaptor complex. We previously reported that loss of any of these proteins causes PSM extension and subsequent sporulation defects, yet their precise function remains unclear. Here, we performed a genetic screen and identified genes coding for a fragment of phosphatidylinositol (PI) 4-kinase catalytic subunit and PI 4-kinase noncatalytic subunit as multicopy suppressors of spo73Δ. Further genetic and cytological analyses revealed that lowering PI4P levels in the PSM rescues the spo73Δ defects. Furthermore, overexpression of VPS13 and lowering PI4P levels synergistically rescued the defect of a spo71Δ spo73Δ double mutant, suggesting that PI4P might regulate Vps13 function. In addition, we show that an N-terminal fragment of Vps13 has affinity for the endoplasmic reticulum (ER), and ER-plasma membrane (PM) tethers localize along the PSM in a manner dependent on Vps13 and the adaptor complex. These observations suggest that Vps13 and the adaptor complex recruit ER-PM tethers to ER-PSM contact sites. Our analysis revealed that involvement of a phosphoinositide, PI4P, in regulation of Vps13, and also suggest that distinct contact site proteins function cooperatively to promote de novo membrane formation.  相似文献   
10.
Gamma-glutamylmethylamide synthetase (GMAS), found in an obligate methylotroph, Methylovorus mays No. 9, can form theanine from glutamic acid and ethylamine in a mixture in which yeast sugar fermentation is coupled for ATP regeneration. The internal and N-terminal amino acid sequences of GMAS had certain similarities to putative glutamine synthetase type III (GS III) of Methylobacillus flagellatus KT. From the M. mays No. 9 genomic DNA library, a clone containing a 6.5-kbp insertional DNA fragment was selected by the PCR screening technique with oligonucleotide primers specific for the GMAS gene. The fragment had an open reading frame of the GMAS gene encoding a protein of 444 amino acids (molecular mass, 49 kDa). The deduced amino acid sequence showed significant identity with that of Met. flagellatus KT GS III (78%). The isolated gene was ligated into an expression vector (pET21a) and expressed in Escherichia coli AD494 (DE3). Enzyme productivity in the expression system was about 23-fold higher than that in M. mays No. 9. Recombinant GMAS had the same properties as intrinsic GMAS, and it formed theanine by coupling the reaction with the ATP-regeneration system of yeast sugar fermentation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号