首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Combining multiple microarrays in the presence of controlling variables   总被引:2,自引:0,他引:2  
MOTIVATION: Microarray technology enables the monitoring of expression levels for thousands of genes simultaneously. When the magnitude of the experiment increases, it becomes common to use the same type of microarrays from different laboratories or hospitals. Thus, it is important to analyze microarray data together to derive a combined conclusion after accounting for the differences. One of the main objectives of the microarray experiment is to identify differentially expressed genes among the different experimental groups. The analysis of variance (ANOVA) model has been commonly used to detect differentially expressed genes after accounting for the sources of variation commonly observed in the microarray experiment. RESULTS: We extended the usual ANOVA model to account for an additional variability resulting from many confounding variables such as the effect of different hospitals. The proposed model is a two-stage ANOVA model. The first stage is the adjustment for the effects of no interests. The second stage is the detection of differentially expressed genes among the experimental groups using the residuals obtained from the first stage. Based on these residuals, we propose a permutation test to detect the differentially expressed genes. The proposed model is illustrated using the data from 133 microarrays collected at three different hospitals. The proposed approach is more flexible to use, and it is easier to accommodate the individual covariates in this model than using the meta-analysis approach. AVAILABILITY: A set of programs written in R will be electronically sent upon request.  相似文献   
2.
SUMMARY: arrayQCplot is a software for the exploratory analysis of microarray data. This software focuses on quality control and generates newly developed plots for quality and reproducibility checks. It is developed using R and provides a user-friendly graphical interface for graphics and statistical analysis. Therefore, novice users will find arrayQCplot as an easy-to-use software for checking the quality of their data by a simple mouse click. AVAILABILITY: arrayQCplot software is available from Bioconductor at http://www.bioconductor.org. A more detailed manual is available at http://bibs.snu.ac.kr/software/arrayQCplot CONTACT: tspark@stats.snu.ac.kr.  相似文献   
3.

Background

Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. This novel technique helps us to understand gene regulation as well as gene by gene interactions more systematically. In the microarray experiment, however, many undesirable systematic variations are observed. Even in replicated experiment, some variations are commonly observed. Normalization is the process of removing some sources of variation which affect the measured gene expression levels. Although a number of normalization methods have been proposed, it has been difficult to decide which methods perform best. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization.

Results

In this paper, we use the variability among the replicated slides to compare performance of normalization methods. We also compare normalization methods with regard to bias and mean square error using simulated data.

Conclusions

Our results show that intensity-dependent normalization often performs better than global normalization methods, and that linear and nonlinear normalization methods perform similarly. These conclusions are based on analysis of 36 cDNA microarrays of 3,840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells. Simulation studies confirm our findings.
  相似文献   
4.

Background  

In the microarray experiment, many undesirable systematic variations are commonly observed. Normalization is the process of removing such variation that affects the measured gene expression levels. Normalization plays an important role in the earlier stage of microarray data analysis. The subsequent analysis results are highly dependent on normalization. One major source of variation is the background intensities. Recently, some methods have been employed for correcting the background intensities. However, all these methods focus on defining signal intensities appropriately from foreground and background intensities in the image analysis. Although a number of normalization methods have been proposed, no systematic methods have been proposed using the background intensities in the normalization process.  相似文献   
5.
Mechanical stretch affects the healing and remodeling process of the anterior cruciate ligament (ACL) after surgery in important ways. In this study, the effects of mechanical stress on gene expression of type I and III collagen by cultured human ACL cells and roles of transforming growth factor (TGF)-beta1 in the regulation of mechanical strain-induced gene expression were investigated. Uniaxial cyclic stretch was applied on ACL cells at 10 cycles/min with 10% length stretch for 24 h. mRNA expression of the type I and type III collagen was increased by the cyclic stretch. TGF-beta1 protein in the cell culture supernatant was also increased by the stretch. In the presence of anti-TGF-beta1 antibody, stretch-induced increase in type I and type III mRNA expression was markedly ablated. The results suggest that the stretch-induced mRNA expression of the type I and type III collagen is mediated via an autocrine mechanism of TGF-beta1 released from ligament cells.  相似文献   
6.
7.
Park T  Yi SG  Lee S  Lee JK 《BioTechniques》2005,38(3):463-471
Different sources of systematic and random error variations are often observed in cDNA microarray experiments. A simple scatter plot is commonly used to examine outlying slides that have unusual expression patterns or larger variability than other slides. These outlying slides tend to have large impacts on the subsequent analyses, such as identification of differentially expressed genes and clustering analysis. However, it is difficult to select outlying slides rigorously and consistently based on subjective human pattern recognition on their scatter plots. A graphical method and a rigorous diagnostic measure are proposed to detect outlying slides. The proposed graphical method is easy to implement and shown to be quite effective in detecting outlying slides in real microarray data sets. This diagnostic measure is also informative to compare variability among slides. Two cDNA microarray data sets are carefully examined to illustrate the proposed approach. A 3840-gene microarray experiment for neuronal differentiation of cortical stem cells and a 2076-gene microarray experiment for anticancer compound time-course expression of the NCI-60 cancer cell lines.  相似文献   
8.
9.

Background  

Microarray gene expression data are often analyzed together with corresponding physiological response and clinical metadata of biological subjects, e.g. patients' residual tumor sizes after chemotherapy or glucose levels at various stages of diabetic patients. Current clustering analysis cannot directly incorporate such quantitative metadata into the clustering heatmap of gene expression. It will be quite useful if these clinical response data can be effectively summarized in the high-dimensional clustering display so that important groups of genes can be intuitively discovered with different degrees of relevance to target disease phenotypes.  相似文献   
10.
MOTIVATION: Microarray technology allows the monitoring of expression levels for thousands of genes simultaneously. In time-course experiments in which gene expression is monitored over time, we are interested in testing gene expression profiles for different experimental groups. However, no sophisticated analytic methods have yet been proposed to handle time-course experiment data. RESULTS: We propose a statistical test procedure based on the ANOVA model to identify genes that have different gene expression profiles among experimental groups in time-course experiments. Especially, we propose a permutation test which does not require the normality assumption. For this test, we use residuals from the ANOVA model only with time-effects. Using this test, we detect genes that have different gene expression profiles among experimental groups. The proposed model is illustrated using cDNA microarrays of 3840 genes obtained in an experiment to search for changes in gene expression profiles during neuronal differentiation of cortical stem cells.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号