首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有16条查询结果,搜索用时 208 毫秒
1.
Pyranose dehydrogenases (PDHs) are extracellular flavin-dependent oxidoreductases secreted by litter-decomposing fungi with a role in natural recycling of plant matter. All major monosaccharides in lignocellulose are oxidized by PDH at comparable yields and efficiencies. Oxidation takes place as single-oxidation or sequential double-oxidation reactions of the carbohydrates, resulting in sugar derivatives oxidized primarily at C2, C3 or C2/3 with the concomitant reduction of the flavin. A suitable electron acceptor then reoxidizes the reduced flavin. Whereas oxygen is a poor electron acceptor for PDH, several alternative acceptors, e.g., quinone compounds, naturally present during lignocellulose degradation, can be used. We have determined the 1.6-Å crystal structure of PDH from Agaricus meleagris. Interestingly, the flavin ring in PDH is modified by a covalent mono- or di-atomic species at the C(4a) position. Under normal conditions, PDH is not oxidized by oxygen; however, the related enzyme pyranose 2-oxidase (P2O) activates oxygen by a mechanism that proceeds via a covalent flavin C(4a)-hydroperoxide intermediate. Although the flavin C(4a) adduct is common in monooxygenases, it is unusual for flavoprotein oxidases, and it has been proposed that formation of the intermediate would be unfavorable in these oxidases. Thus, the flavin adduct in PDH not only shows that the adduct can be favorably accommodated in the active site, but also provides important details regarding the structural, spatial and physicochemical requirements for formation of this flavin intermediate in related oxidases. Extensive in silico modeling of carbohydrates in the PDH active site allowed us to rationalize the previously reported patterns of substrate specificity and regioselectivity. To evaluate the regioselectivity of D-glucose oxidation, reduction experiments were performed using fluorinated glucose. PDH was rapidly reduced by 3-fluorinated glucose, which has the C2 position accessible for oxidation, whereas 2-fluorinated glucose performed poorly (C3 accessible), indicating that the glucose C2 position is the primary site of attack.  相似文献   
2.
Serine hydroxymethyltransferase (SHMT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes a hydroxymethyl group transfer from l-serine to tetrahydrofolate (H4folate) to yield glycine and 5,10-methylenetetrahydrofolate (CH2-H4folate). SHMT is crucial for deoxythymidylate biosynthesis and a target for antimalarial drug development. Our previous studies indicate that PvSHMT catalyzes the reaction via a ternary complex mechanism. To define the kinetic mechanism of this catalysis, we explored the PvSHMT reaction by employing various methodologies including ligand binding, transient, and steady-state kinetics as well as product analysis by rapid-quench and HPLC/MS techniques. The results indicate that PvSHMT can bind first to either l-serine or H4folate. The dissociation constants for the enzyme·l-serine and enzyme·H4folate complexes were determined as 0.18 ± 0.08 and 0.35 ± 0.06 mm, respectively. The amounts of glycine formed after single turnovers of different preformed binary complexes were similar, indicating that the reaction proceeds via a random-order binding mechanism. In addition, the rate constant of glycine formation measured by rapid-quench and HPLC/MS analysis is similar to the kcat value (1.09 ± 0.05 s−1) obtained from the steady-state kinetics, indicating that glycine formation is the rate-limiting step of SHMT catalysis. This information will serve as a basis for future investigation on species-specific inhibition of SHMT for antimalarial drug development.  相似文献   
3.
Pyranose 2-oxidase (P2Ox) participates in fungal lignin degradation by producing the H2O2 needed for lignin-degrading peroxidases. The enzyme oxidizes cellulose- and hemicellulose-derived aldopyranoses at C2 preferentially, but also on C3, to the corresponding ketoaldoses. To investigate the structural determinants of catalysis, covalent flavinylation, substrate binding, and regioselectivity, wild-type and mutant P2Ox enzymes were produced and characterized biochemically and structurally. Removal of the histidyl-FAD linkage resulted in a catalytically competent enzyme containing tightly, but noncovalently bound FAD. This mutant (H167A) is characterized by a 5-fold lower kcat, and a 35-mV lower redox potential, although no significant structural changes were seen in its crystal structure. In previous structures of P2Ox, the substrate loop (residues 452-457) covering the active site has been either disordered or in a conformation incompatible with carbohydrate binding. We present here the crystal structure of H167A in complex with a slow substrate, 2-fluoro-2-deoxy-D-glucose. Based on the details of 2-fluoro-2-deoxy-D-glucose binding in position for oxidation at C3, we also outline a probable binding mode for D-glucose positioned for regioselective oxidation at C2. The tentative determinant for discriminating between the two binding modes is the position of the O6 hydroxyl group, which in the C2-oxidation mode can make favorable interactions with Asp452 in the substrate loop and, possibly, a nearby arginine residue (Arg472). We also substantiate our hypothesis with steady-state kinetics data for the alanine replacements of Asp452 and Arg472 as well as the double alanine 452/472 mutant.  相似文献   
4.
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH- (C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and tightly to reduced FMN (Kd, 1.2 +/- 0.2 microm), but less tightly to oxidized FMN (Kd, 250 +/- 50 microm). The complex of C -FMNH-2 reacted with oxygen to form C(4a)-hydroperoxy-FMN at 1.1 +/- 0.1 x 10(6) m(-1) s(-1), whereas the C -FMNH-2 -HPA complex reacted with oxygen to form C(4a)-hydroperoxy-FMN-HPA more slowly (k = 4.8 +/- 0.2 x 10(4) m(-1) s(-1)). The kinetic mechanism of C2 was shown to be a preferential random order type, in which HPA or oxygen can initially bind to the C -FMNH-2 complex, but the preferred path was oxygen reacting with C -FMNH-2 to form the C(4a)-hydroperoxy-FMN intermediate prior to HPA binding. Hydroxylation occurs from the ternary complex with a rate constant of 20 s(-1) to form the C2-C(4a)-hydroxy-FMN-DHPA complex. At high HPA concentrations (>0.5 mm), HPA formed a dead end complex with the C2-C(4a)-hydroxy-FMN intermediate (similar to single component flavoprotein hydroxylases), thus inhibiting the bound flavin from returning to the oxidized form. When FADH- was used, C(4a)-hydroperoxy-FAD, C(4a)-hydroxy-FAD, and product were formed at rates similar to those with FMNH-. Thus, C2 has the unusual ability to use both common flavin cofactors in catalysis.  相似文献   
5.
C4a-hydroperoxyflavin is found commonly in the reactions of flavin-dependent monooxygenases, in which it plays a key role as an intermediate that incorporates an oxygen atom into substrates. Only recently has evidence for its involvement in the reactions of flavoprotein oxidases been reported. Previous studies of pyranose 2-oxidase (P2O), an enzyme catalyzing the oxidation of pyranoses using oxygen as an electron acceptor to generate oxidized sugars and hydrogen peroxide (H(2)O(2)), have shown that C4a-hydroperoxyflavin forms in P2O reactions before it eliminates H(2)O(2) as a product (Sucharitakul, J., Prongjit, M., Haltrich, D., and Chaiyen, P. (2008) Biochemistry 47, 8485-8490). In this report, the solvent kinetic isotope effects (SKIE) on the reaction of reduced P2O with oxygen were investigated using transient kinetics. Our results showed that D(2)O has a negligible effect on the formation of C4a-hydroperoxyflavin. The ensuing step of H(2)O(2) elimination from C4a-hydroperoxyflavin was shown to be modulated by an SKIE of 2.8 ± 0.2, and a proton inventory analysis of this step indicates a linear plot. These data suggest that a single-proton transfer process causes SKIE at the H(2)O(2) elimination step. Double and single mixing stopped-flow experiments performed in H(2)O buffer revealed that reduced flavin specifically labeled with deuterium at the flavin N5 position generated kinetic isotope effects similar to those found with experiments performed with the enzyme pre-equilibrated in D(2)O buffer. This suggests that the proton at the flavin N5 position is responsible for the SKIE and is the proton-in-flight that is transferred during the transition state. The mechanism of H(2)O(2) elimination from C4a-hydroperoxyflavin is consistent with a single proton transfer from the flavin N5 to the peroxide leaving group, possibly via the formation of an intramolecular hydrogen bridge.  相似文献   
6.
2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (MHPCO) is a flavoprotein that catalyzes the oxygenation of MHPC to form alpha-(N-acetylaminomethylene)-succinic acid. Although formally similar to the oxygenation reactions catalyzed by phenol hydroxylases, MHPCO catalyzes the oxygenation of a pyridyl derivative rather than a simple phenol. Therefore, in this study, the mechanism of the reaction was investigated by replacing the natural cofactor FAD with FAD analogues having various substituents (-Cl, -CN, -NH(2), -OCH(3)) at the C8-position of the isoalloxazine. Thermodynamic and catalytic properties of the reconstituted enzyme were investigated and found to be similar to those of the native enzyme, validating that these FAD analogues are reasonable to be used as mechanistic probes. Dissociation constants for the binding of MHPC or the substrate analogue 5-hydroxynicotinate (5HN) to the reconstituted enzymes indicate that the reconstituted enzymes bind well with ligands. Redox potential values of the reconstituted enzymes were measured and found to be more positive than the values of free FAD analogues, which correlated well with the electronic effects of the 8-substituents. Studies of the reductive half-reaction of MHPCO have shown that the rates of flavin reduction by NADH could be described as a parabolic relationship with the redox potential values of the reconstituted enzymes, which is consistent with the Marcus electron transfer theory. Studies of the oxidative half-reaction of MHPCO revealed that the rate of hydroxylation depended upon the different analogues employed. The rate constants for the hydroxylation step correlated with the calculated pK(a) values of the 8-substituted C(4a)-hydroxyflavin intermediates, which are the leaving groups in the oxygen transfer step. It was observed that the rates of hydroxylation were greater when the pK(a) values of C(4a)-hydroxyflavins were lower. Although these results are not as dramatic as those from analogous studies with parahydroxybenzoate hydroxylase (Ortiz-Maldonado et al., (1999) Biochemistry 38, 8124-8137), they are consistent with the model that the oxygenation reaction of MHPCO occurs via an electrophilic aromatic substitution mechanism analogous to the mechanisms for parahydroxybenzoate and phenol hydroxylases.  相似文献   
7.
Pyranose 2-oxidase (P2O) catalyzes the oxidation by O2 of d-glucose and several aldopyranoses to yield the 2-ketoaldoses and H2O2. Based on crystal structures, in one rotamer conformation, the threonine hydroxyl of Thr169 forms H-bonds to the flavin-N5/O4 locus, whereas, in a different rotamer, it may interact with either sugar or other parts of the P2O·sugar complex. Transient kinetics of wild-type (WT) and Thr169 → S/N/G/A replacement variants show that d-Glc binds to T169S, T169N, and WT with the same Kd (45–47 mm), and the hydride transfer rate constants (kred) are similar (15.3–9.7 s−1 at 4 °C). kred of T169G with d-glucose (0.7 s−1, 4 °C) is significantly less than that of WT but not as severely affected as in T169A (kred of 0.03 s−1 at 25 °C). Transient kinetics of WT and mutants using d-galactose show that P2O binds d-galactose with a one-step binding process, different from binding of d-glucose. In T169S, T169N, and T169G, the overall turnover with d-Gal is faster than that of WT due to an increase of kred. In the crystal structure of T169S, Ser169 Oγ assumes a position identical to that of Oγ1 in Thr169; in T169G, solvent molecules may be able to rescue H-bonding. Our data suggest that a competent reductive half-reaction requires a side chain at position 169 that is able to form an H-bond within the ES complex. During the oxidative half-reaction, all mutants failed to stabilize a C4a-hydroperoxyflavin intermediate, thus suggesting that the precise position and geometry of the Thr169 side chain are required for intermediate stabilization.  相似文献   
8.
p-Hydroxyphenylacetate (HPA) 3-hydroxylase is a two-component flavin-dependent monooxygenase. Based on the crystal structure of the oxygenase component (C2), His-396 is 4.5 Å from the flavin C4a locus, whereas Ser-171 is 2.9 Å from the flavin N5 locus. We investigated the roles of these two residues in the stability of the C4a-hydroperoxy-FMN intermediate. The results indicated that the rate constant for C4a-hydroperoxy-FMN formation decreased ∼30-fold in H396N, 100-fold in H396A, and 300-fold in the H396V mutant, compared with the wild-type enzyme. Lesser effects of the mutations were found for the subsequent step of H2O2 elimination. Studies on pH dependence showed that the rate constant of H2O2 elimination in H396N and H396V increased when pH increased with pKa >9.6 and >9.7, respectively, similar to the wild-type enzyme (pKa >9.4). These data indicated that His-396 is important for the formation of the C4a-hydroperoxy-FMN intermediate but is not involved in H2O2 elimination. Transient kinetics of the Ser-171 mutants with oxygen showed that the rate constants for the H2O2 elimination in S171A and S171T were ∼1400-fold and 8-fold greater than the wild type, respectively. Studies on the pH dependence of S171A with oxygen showed that the rate constant of H2O2 elimination increased with pH rise and exhibited an approximate pKa of 8.0. These results indicated that the interaction of the hydroxyl group side chain of Ser-171 and flavin N5 is required for the stabilization of C4a-hydroperoxy-FMN. The double mutant S171A/H396V reacted with oxygen to directly form the oxidized flavin without stabilizing the C4a-hydroperoxy-FMN intermediate, which confirmed the findings based on the single mutation that His-396 was important for formation and Ser-171 for stabilization of the C4a-hydroperoxy-FMN intermediate in C2.  相似文献   
9.
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is an NADH-specific flavoprotein monooxygenase that catalyzes the para-hydroxylation of 3-hydroxybenzoate (3HB) to form 2,5-dihydroxybenzoate (2,5-DHB). Based on results from stopped-flow spectrophotometry, the reduced enzyme-3HB complex reacts with oxygen to form a C4a-peroxy flavin with a rate constant of 1.13 ± 0.01 × 106 m−1 s−1 (pH 8.0, 4 °C). This intermediate is subsequently protonated to form a C4a-hydroperoxyflavin with a rate constant of 96 ± 3 s−1. This step shows a solvent kinetic isotope effect of 1.7. Based on rapid-quench measurements, the hydroxylation occurs with a rate constant of 36 ± 2 s−1. 3HB6H does not exhibit substrate inhibition on the flavin oxidation step, a common characteristic found in most ortho-hydroxylation enzymes. The apparent kcat at saturating concentrations of 3HB, NADH, and oxygen is 6.49 ± 0.02 s−1. Pre-steady state and steady-state kinetic data were used to construct the catalytic cycle of the reaction. The data indicate that the steps of product release (11.7 s−1) and hydroxylation (36 ± 2 s−1) partially control the overall turnover.  相似文献   
10.
3-Hydroxybenzoate 6-hydroxylase (3HB6H) from Rhodococcus jostii RHA1 is a nicotinamide adenine dinucleotide (NADH)-specific flavoprotein monooxygenase involved in microbial aromatic degradation. The enzyme catalyzes the para hydroxylation of 3-hydroxybenzoate (3-HB) to 2,5-dihydroxybenzoate (2,5-DHB), the ring-fission fuel of the gentisate pathway. In this study, the kinetics of reduction of the enzyme-bound flavin by NADH was investigated at pH 8.0 using a stopped-flow spectrophotometer, and the data were analyzed comprehensively according to kinetic derivations and simulations. Observed rate constants for reduction of the free enzyme by NADH under anaerobic conditions were linearly dependent on NADH concentrations, consistent with a one-step irreversible reduction model with a bimolecular rate constant of 43 ± 2 M(-1) s(-1). In the presence of 3-HB, observed rate constants for flavin reduction were hyperbolically dependent on NADH concentrations and approached a limiting value of 48 ± 2 s(-1). At saturating concentrations of NADH (10 mM) and 3-HB (10 mM), the reduction rate constant is ~51 s(-1), whereas without 3-HB, the rate constant is 0.43 s(-1) at a similar NADH concentration. A similar stimulation of flavin reduction was found for the enzyme-product (2,5-DHB) complex, with a rate constant of 45 ± 2 s(-1). The rate enhancement induced by aromatic ligands is not due to a thermodynamic driving force because Em 0 for the enzyme-substrate complex is -179 ± 1 mV compared to an E(m)(0) of -175 ± 2 mV for the free enzyme. It is proposed that the reduction mechanism of 3HB6H involves an isomerization of the initial enzyme-ligand complex to a fully activated form before flavin reduction takes place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号