首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2001年   3篇
  1999年   1篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
1.
Treatment of normal mouse spleen cells with lipid fluidity modulators changes the expression of cell-surface H-2 determinants. BALB/c spleen cells treated for 1 to 2 hr with cholesteryl hemisuccinate (CHS) displayed reduced levels of all tested H-2 determinants (H-2L, H-2K, and H-2D) as evaluated by flow microfluorometry and increased membrane lipid packing density as determined by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence polarization. In contrast, decreasing membrane lipid packing density by phosphatidylcholine treatment decreased DPH fluorescence polarization and increased the expression of MHC determinants. The effects were selective in that expression of Thy-1.2 determinants was decreased by the latter treatment and not increased by CHS. The results are discussed in terms of passive modulation of antigenic expression.  相似文献   
2.
Histamine is a biogenic amine that plays an essential role in controlling many physiological functions, both in the central nervous system (CNS) and the peripheral nervous system (PNS). Most of these physiological effects are mediated through interactions with four histamine receptor subtypes, all of which are members of the larger family of rhodopsin-like class A G-protein coupled receptors (GPCRs) (Leurs et al., 2011; Lim et al., 2009). Here, we focus on the genetic variations and polymorphisms localized on the genes encoding for human histamine receptors where it provides an up to date collection of all polymorphisms found on genes encoding the histamine receptor subtypes and their association to diseases.  相似文献   
3.
The development of multicomponent biotherapeutic carriers is an important challenge in the field of drug delivery, particularly in the area of protein-based vaccines. While the delivery of protein antigens to antigen presenting cells (APCs) is crucial for this type of vaccination, the incorporation of additional adjuvants may be just as important in order to generate more potent immune responses. This article presents the synthesis and biological evaluation of carrier particles that both deliver a protein payload to APCs and display receptor ligands for the enhancement of APC immunostimulation. Particles displaying CpG oligonucleotide ligands for Toll-like receptor 9 were synthesized. The addition of CpG DNA to the particles led to a 45-fold increase in the secretion of interleukin-12, a cytokine that aids in T-cell activation, and a significant increase in the expression of costimulatory molecules by APCs. Moreover, vaccination with particles containing both ovalbumin (OVA) and CpG DNA induced a superior OVA-specific CD8 T-cell response in vivo, as measured by increased OVA-specific CD8 T-cell proliferation, secretion of the proinflammatory cytokine IFN-gamma, and the induction of OVA-specific cytotoxicity.  相似文献   
4.

CRISPR/Cas9 has emerged as a simple, yet efficient gene editing tool to generate targeted mutations in desired genes in crops plants. Agrobacterium tumefaciens, a reliable and inexpensive DNA-delivery mechanism into plant cells, has been used for the generation of CRISPR/Cas9-mediated mutations in crop plants, including potato. However, little information is available as to the progression of gene knockout during various stages of culture following the introduction of CRISPR components in this species. In the current study, the green fluorescent protein (gfp) transgene was first introduced in the genome of a potato variety, Yukon Gold. Two GFP-expressing lines, one with a single gfp copy integrated and another with four gfp copies integrated, were subjected to CRISPR/Cas9-mediated mutations in the transgene(s) using three different gRNAs. Disappearance of GFP fluorescence was monitored during the entire culture/regeneration process. Although all three gRNAs successfully knocked out the transgene(s), their efficiencies differed greatly and did not completely match the predicted scores by some guide RNA prediction tools. The nature of mutations in various knockout events was analyzed. Several lines containing four gfp-copies showed four different types of mutations. These findings suggest that it is possible to target all four alleles of a desired native gene in the tetraploid potato.

  相似文献   
5.
Lovastatin and other statins inhibit HMG-CoA reductase, which carries out an early step in the sterol biosynthesis pathway. Statins lower cholesterol and are widely prescribed to prevent heart disease, but like many drugs, they can interact with nutritionally acquired metabolites. To probe these interactions, we explored the effect of a diverse library of metabolites on statin effectiveness using a Saccharomyces cerevisiae model. In yeast, treatment with lovastatin results in reduced growth. We combined lovastatin with the library of metabolites, and found that copper and zinc ions impaired the ability of the statin to inhibit yeast growth. Using an integrated genomic and metabolomic approach, we found that lovastatin plus metal synergistically upregulated some sterol biosynthesis genes. This altered pattern of gene expression resulted in greater flux through the sterol biosynthesis pathway and an increase in ergosterol levels. Each sterol intermediate level was correlated with expression of the upstream gene. Thus, the ergosterol biosynthetic response induced by statin is enhanced by copper and zinc. In cultured mammalian cells, these metals also rescued statin growth inhibition. Because copper and zinc impair the ability of statin to reduce sterol biosynthesis, dietary intake of these metals could have clinical relevance for statin treatment in humans.  相似文献   
6.
Huang YY  Lu H  Liu S  Droz-Rosario R  Shen Z 《PloS one》2012,7(1):e30638
Multiple DNA repair pathways are involved in the orderly development of neural systems at distinct stages. The homologous recombination (HR) pathway is required to resolve stalled replication forks and critical for the proliferation of progenitor cells during neural development. BCCIP is a BRCA2 and CDKN1A interacting protein implicated in HR and inhibition of DNA replication stress. In this study, we determined the role of BCCIP in neural development using a conditional BCCIP knock-down mouse model. BCCIP deficiency impaired embryonic and postnatal neural development, causing severe ataxia, cerebral and cerebellar defects, and microcephaly. These development defects are associated with spontaneous DNA damage and subsequent cell death in the proliferative cell populations of the neural system during embryogenesis. With in vitro neural spheroid cultures, BCCIP deficiency impaired neural progenitor's self-renewal capability, and spontaneously activated p53. These data suggest that BCCIP and its anti-replication stress functions are essential for normal neural development by maintaining an orderly proliferation of neural progenitors.  相似文献   
7.
8.
Yoder A  Yu D  Dong L  Iyer SR  Xu X  Kelly J  Liu J  Wang W  Vorster PJ  Agulto L  Stephany DA  Cooper JN  Marsh JW  Wu Y 《Cell》2008,134(5):782-792
Binding of the HIV envelope to the chemokine coreceptors triggers membrane fusion and signal transduction. The fusion process has been well characterized, yet the role of coreceptor signaling remains elusive. Here, we describe a critical function of the chemokine coreceptor signaling in facilitating HIV infection of resting CD4 T cells. We find that static cortical actin in resting T cells represents a restriction and that HIV utilizes the Galphai-dependent signaling from the chemokine coreceptor CXCR4 to activate a cellular actin-depolymerizing factor, cofilin, to overcome this restriction. HIV envelope-mediated cofilin activation and actin dynamics are important for a postentry process that leads to viral nuclear localization. Inhibition of HIV-mediated actin rearrangement markedly diminishes viral latent infection of resting T cells. Conversely, induction of active cofilin greatly facilitates it. These findings shed light on viral exploitation of cellular machinery in resting T cells, where chemokine receptor signaling becomes obligatory.  相似文献   
9.
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号