首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   24篇
  111篇
  2024年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   6篇
  2007年   4篇
  2006年   7篇
  2005年   2篇
  2004年   8篇
  2003年   8篇
  2002年   6篇
  2001年   9篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   8篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1979年   1篇
  1977年   3篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
1.
Human immunodeficiency virus Nef protein accelerates virulent progression of AIDS by its interaction with specific cellular proteins involved in cellular activation and signal transduction. Here we report the purification and crystallization of the conserved core of HIV-1LAI Nef protein in the unliganded form and in complex with the wild-type SH3 domain of the P59fyn protein-tyrosine kinase. One-dimensional NMR experiments show that full-length protein and truncated fragment corresponding to the product of HIV-1 protease cleavage have a well-folded compact tertiary structure. The ligand-free HIV-1 Nefcore protein forms cubic crystals belonging to space group P23 with unit cell dimensions of a = b = c = 86.4 A. The Nef-Fyn SH3 cocrystals belong to the space group P6(1)22 or its enantiomorph, P6(5)22, with unit cell dimensions of a = b = 108.2 A and c = 223.7 A. Both crystal forms diffract to a resolution limit of 3.0 A resolution using synchrotron radiation, and are thus suitable for X-ray structure determination.  相似文献   
2.
3.
The mammalian Alu domain of the signal recognition particle (SRP) consists of a heterodimeric protein SRP9/14 and the Alu portion of 7SL RNA and comprises the elongation arrest function of the particle. To define the domain in Saccharomyces cerevisiae SRP that is homologous to the mammalian Alu domain [Alu domain homolog in yeast (Adhy)], we examined the assembly of a yeast protein homologous to mammalian SRP14 (Srp14p) and scR1 RNA. Srp14p binds as a homodimeric complex to the 5' sequences of scR1 RNA. Its minimal binding site consists of 99 nt. (Adhy RNA), comprising a short hairpin structure followed by an extended stem. As in mammalian SRP9/14, the motif UGUAAU present in most SRP RNAs is part of the Srp14p binding sites as shown by footprint and mutagenesis studies. In addition, certain basic amino acid residues conserved between mammalian SRP14 and Srp14p are essential for RNA binding in both proteins. These findings confirm the common ancestry of the yeast and the mammalian components and indicate that Srp14p together with Adhy RNA represents the Alu domain homolog in yeast SRP that may comprise its elongation arrest function. Despite the similarities, Srp14p selectively recognizes only scR1 RNA, revealing substantial changes in RNA-protein recognition as well as in the overall structure of the complex. The alignment of the three yeast SRP RNAs known to date suggests a common structure for the putative elongation arrest domain of all three organisms.  相似文献   
4.
Proper folding of the RNA is an essential step in the assembly of functional ribonucleoprotein complexes. We examined the role of conserved base pairs formed between two distant loops in the Alu portion of the mammalian signal recognition particle RNA (SRP RNA) in SRP assembly and functions. Mutations disrupting base pairing interfere with folding of the Alu portion of the SRP RNA as monitored by probing the RNA structure and the binding of the protein SRP9/14. Complementary mutations rescue the defect establishing a role of the tertiary loop–loop interaction in RNA folding. The same mutations in the Alu domain have no major effect on binding of proteins to the S domain suggesting that the S domain can fold independently. Once assembled into a complete SRP, even particles that contain mutant RNA are active in arresting nascent chain elongation and translocation into microsomes, and, therefore, tertiary base pairing does not appear to be essential for these activities. Our results suggest a model in which the loop–loop interaction and binding of the protein SRP9/14 play an important role in the early steps of SRP RNA folding and assembly.  相似文献   
5.
ClpB of Escherichia coli is an ATP-dependent ring-forming chaperone that mediates the resolubilization of aggregated proteins in cooperation with the DnaK chaperone system. ClpB belongs to the Hsp100/Clp subfamily of AAA+ proteins and is composed of an N-terminal domain and two AAA-domains that are separated by a "linker" region. Here we present a detailed structure-function analysis of ClpB, dissecting the individual roles of ClpB domains and conserved motifs in oligomerization, ATP hydrolysis, and chaperone activity. Our results show that ClpB oligomerization is strictly dependent on the presence of the C-terminal domain of the second AAA-domain, while ATP binding to the first AAA-domains stabilized the ClpB oligomer. Analysis of mutants of conserved residues in Walker A and B and sensor 2 motifs revealed that both AAA-domains contribute to the basal ATPase activity of ClpB and communicate in a complex manner. Chaperone activity strictly depends on ClpB oligomerization and the presence of a residual ATPase activity. The N-domain is dispensable for oligomerization and for the disaggregating activity in vitro and in vivo. In contrast the presence of the linker region, although not involved in oligomerization, is essential for ClpB chaperone activity.  相似文献   
6.
The symbiotic hydrothermal vent tubeworm Riftia pachyptila needs to supply its internal bacterial symbionts with carbon dioxide, their inorganic carbon source. Our aim in this study was to characterize the carbonic anhydrase (CA) involved in CO(2) transport and conversion at various steps in the plume and the symbiotic tissue, the trophosome. A complete 1209 kb cDNA has been sequenced from the trophosome and identified as a putative alpha-CA based on BLAST analysis and the similarities of total deduced amino-acid sequence with those from the GenBank database. In the plume, the putative CA sequence obtained from cDNA library screening was 90% identical to the trophosome CA, except in the first 77 nucleotides downstream from the initiation site identified on trophosome CA. A phylogenetic analysis showed that the annelidan Riftia CA (CARp) emerges clustered with invertebrate CAs, the arthropodan Drosophila CA and the cnidarian Anthopleura CA. This invertebrate cluster appeared as a sister group of the cluster comprising mitochondrial and cytosolic isoforms in vertebrates: CAV, CAI II and III, and CAVII. However, amino acid sequence alignment showed that Riftia CA was closer to cytosolic CA than to mitochondrial CA. Combined biochemical approaches revealed two cytosolic CAs with different molecular weights and pI's in the plume and the trophosome, and the occurrence of a membrane-bound CA isoform in addition to the cytosolic one in the trophosome. The physiologic roles of cytosolic CA in both tissues and supplementary membrane-bound CA isoform in the trophosome in the optimization of CO(2) transport and conversion are discussed.  相似文献   
7.
The mitochondrial protein import motor   总被引:2,自引:0,他引:2  
Strub A  Lim JH  Pfanner N  Voos W 《Biological chemistry》2000,381(9-10):943-949
Mitochondrial proteins are synthesized as precursor proteins in the cytosol and are posttranslationally imported into the organelle. A complex system of translocation machineries recognizes and transports the precursor polypeptide across the mitochondrial membranes. Energy for the translocation process is mainly supplied by the mitochondrial membrane potential (deltapsi) and the hydrolysis of ATP. Mitochondrial Hsp70 (mtHsp70) has been identified as the major ATPase driving the membrane transport of the precursor polypeptides into the mitochondrial matrix. Together with the partner proteins Tim44 and Mge1, mtHsp70 forms an import motor complex interacting with the incoming preproteins at the inner face of the inner membrane. This import motor complex drives the movement of the polypeptides in the translocation channel and the unfolding of carboxy-terminal parts of the preproteins on the outside of the outer membrane. Two models of the molecular mechanism of mtHsp70 during polypeptide translocation are discussed. In the 'trapping' model, precursor movement is generated by Brownian movement of the polypeptide chain in the translocation pore. This random movement is made vectorial by the interaction with mtHsp70 in the matrix. The detailed characterization of conditional mutants of the import motor complex provides the basis for an extended model. In this 'pulling' model, the attachment of mtHsp70 at the inner membrane via Tim44 and a conformational change induced by ATP results in the generation of an inward-directed force on the bound precursor polypeptide. This active role of the import motor complex is necessary for the translocation of proteins containing tightly folded domains. We suggest that both mechanisms complement each other to reach a high efficiency of preprotein import.  相似文献   
8.
The human oncoprotein p13 MTCP1 is coded by the MTCP1 gene, a gene involved in chromosomal translocations associated with T-cell prolymphocytic leukemia, a rare form of human leukemia with a mature T-cell phenotype. The primary sequence of p13 MTCP1 is highly and only homologous to that of p14 TCL1 , a product coded by the gene TCL1 which is also involved in T-cell prolymphocytic leukemia. These two proteins probably represent the first members of a new family of oncogenic proteins. We present the three-dimensional solution structure of the recombinant p13 MTCP1 determined by homonuclear proton two-dimensional NMR methods at 600 MHz. After proton resonance assignments, a total of 1253 distance restraints and 64 dihedral restraints were collected. The solution structure of p13 MTCP1 is presented as a set of 20 DYANA structures. The rmsd values with respect to the mean structure for the backbone and all heavy atoms for the conformer family are 1.07 ± 0.19 and 1.71 ± 0.17 Å, when the structured core of the protein (residues 11–103) is considered. The solution structure of p13 MTCP1 consists of an orthogonal -barrel, composed of eight antiparallel -strands which present an original arrangement. The two -pleated loops which emerge from this barrel might constitute the interaction surface with a potential molecular partner.  相似文献   
9.
Previous studies have indicated that the frequency of murine CTL precursors (CTLp) for human class I molecules is one to two orders of magnitude lower than that for murine class I alloantigens, and that this is due to species-specific structural differences between these molecules. Transgenic mice expressing the human class I MHC Ag HLA-A2.1 were used to examine changes in the frequency of class I HLA-specific precursors after T cell differentiation in an HLA-A2.1 positive environment. The HLA-A2.1 gene product was expressed at levels comparable to those of the endogenous H-2Db molecule in thymus, bone marrow, and spleen. By limiting dilution analysis, it was observed that the frequencies of CTLp in transgenic mice responding to the human alloantigens HLA-B7 or HLA-A2.2 were comparable to or lower than those in normal C57BL/6 mice, regardless of whether the Ag was presented on human or murine cells. Thus, expression of a human class I molecule in these animals did not result in an expansion of the number of CTLp specific for other human class I Ag. In addition, the frequency of HLA-A2.1-restricted, influenza specific CTLp was substantially lower than the frequency of H-2b restricted CTLp, indicating a poor utilization of HLA-A2.1 as a restricting element. Finally, the frequencies of CTLp for HLA-A2.1 expressed on syngeneic murine tumor cells were decreased significantly. Thus, expression of HLA-A2.1 in these animals appeared to induced tolerance to this Ag. Interestingly, however, these mice were not tolerant to the HLA-A2.1 molecule expressed on human cells. This indicates that the HLA-A2.1 associated epitopes expressed on murine and human cells differ and suggests that, under these circumstances, HLA-A2.1 acts as a restricting element for human nominal Ag. These results are discussed in the context of current models of T cell repertoire development.  相似文献   
10.
Alu elements as regulators of gene expression   总被引:9,自引:3,他引:9  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号