首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2017年   2篇
  2015年   1篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2004年   6篇
排序方式: 共有28条查询结果,搜索用时 328 毫秒
1.
The polyethylene glycol (PEG) treatment of ciprofloxacin-Indion 234 complex was aimed to retard rapid ion exchange drug release at gastric pH. Ciprofloxacin loading on Indion 234 was performed in a batch process, and the amount of K+ in Indion 234 displaced by drug with time was studied as equilibrium constant KDM. Drug-resin complex (DRC) was treated with aqueous PEG solution (0.5%–2% wt/vol) of different molecular weights (MWs) for 2 to 30 minutes. The PEG-treated ciprofloxacin-Indion 234 complex was evaluated for particle size, water absorption time, and drug release at gastric pH. During drug loading on Indion 234, the equilibrium constant (KDM) increased rapidly up to 20 minutes with efficient drug loading. Increased time of immersion of the drug resinate in PEG solutions significantly retained higher size particles upon dehydration. The larger DRC particles showed longer water absorption times owing to compromised hydrating power. The untreated DRC showed insignificant drug release in deionized water; while at gastric pH, ciprofloxacin release was complete in 90 minutes. A trend of increased residual particle size, proportionate increase in water absorption time, and hence the retardation of release with time of immersion was evident in PEG-treated DRC. The time of immersion of DRC in PEG-treated DRC. The time of immersion of DRC in PEG solution had predominant release retardant effect, while the effect of molecular weight of PEG was insignificant. Thus, PEG treatment of DRC successfully retards ciprofloxacin ion exchange release in acidic pH.  相似文献   
2.
The purpose of this research was to obtain directly compressible agglomerates of ibuprofen-paracetamol containing a desired ratio of drugs using a crystallo-co-agglomeration technique. Crystallo-co-agglomeration is an extension of the spherical crystallization technique, which enables simultaneous crystallization and agglomeration of 2 or more drugs or crystallization of a drug and its simultaneous agglomeration with another drug or excipient. Dichloromethane (DCM)-water system containing polyethylene glycol (PEG) 6000, polyvinyl pyrollidone, and ethylcellulose was used as the crystallization system. DCM acted as a good solvent for ibuprofen and bridging liquid for agglomeration. The process was performed at pH 5, considering the low solubility of ibuprofen and the stability of paracetamol. Loss of paracetamol was reduced by maintaining a low process temperature and by the addition of dextrose as a solubility suppressant. The agglomerates were characterized by differential scanning calorimetry, powder x-ray diffraction (PXRD), and scanning electron microscopy and were evaluated for tableting properties. The spherical agglomerates contained an ibuprofen-paracetamol ratio in the range of 1.23 to 1.36. Micromeritic, mechanical, and compressional properties of the agglomerates were affected by incorporated polymer. The PXRD data showed reduction in intensities owing to dilution and reduced crystallinity. Thermal data showed interaction between components at higher temperature. Ethylcellulose imparted mechanical strength to the agglomerates as well as compacts. The agglomerates containing PEG have better comparessibility but drug release in the initial stages was affected owing to asperity melting, yielding harder compacts. The agglomeration and properties of agglomerates were influenced by the nature of polymer.  相似文献   
3.
The purpose of this research was to apply vacuum foam drying (VFD) for processing of LaSota virus and to screen formulation additives for its stability. The aqueous dispersion of harvest containing sucrose or trehalose in combination with additive (monosaccharides, polymers, N-Z-amine) was prepared. The diluted dispersions in vials were vacuum concentrated, foamed to form a continuous structure, and vacuum dried. The products were evaluated for foam characteristics, residual moisture, virus titer, x-ray diffraction pattern, and stability profile. The foamability increased with solid content in solutions. The foamability of sucrose was enhanced with incorporation of N-Z-amine (10% and 15% wt/vol) and polyvinyl pyrrolidone (PVP K30, 3% wt/vol). The fructose- or galactose-containing mixtures were deposited irregularly on the vial surface. The virus titer increased with disaccharides in the formulation. Sucrose provided better protection than trehalose. Unlike lyophilization, N-Z-amine with sucrose protected the virus from Millard’s Browning. Amino acids do not have a catalytic effect on hydrolysis of sucrose during VFD. Monosaccharides were ineffective. A synergistic effect of PVP K30 or polyethylene glycol 6000 (3% wt/vol) with N-Z-amine provided the maximum virus titer (6.97 and 7.15, respectively). This formulation retained the desired virus potency at 5°, 25°, and 40°C. The diffraction pattern revealed that a threshold concentration of N-Z-amine was required for inhibiting crystallization of sucrose during VFD. VFD was successfully applied to produce a solid LaSota formulation. The products were amorphous and did not devitrify on storage. Published: July 21, 2006  相似文献   
4.
Woodfordia fruticosa Kurz is a member of family Lythraceae, commonly used in the treatment of diseases like leucorrhoea, dysentery, leprosy and menorrhagia. The plant material such as leaves, bark and flowers were collected from three different (200, 402 and 600?m) altitudes of Khandala (M.S. India) and the extracts were prepared in solvents like methanol, ethanol and distilled water. The radical scavenging potential and total phenolic content of the extracts were evaluated. The methanol extract of bark collected from the location one (200?m) showed high radical scavenging activity (96.52?±?0.02) than distilled water and ethanol extracts (57.80?±?0.2 and 86.52?±?0.03). The bark of the plant showed highest (663?±?37.85) total phenolic content that of flowers and leaves. The methanol extracts of leaves, bark and flowers showed high tannic acid content, while TBARS assay of ethanol extract of flowers showed maximum protection (27.65). It was observed that there is no significant difference in percent scavenging activity in different plant parts collected from three different altitudes but showed difference in the solvent system used. The results obtained are in support of extensive use of Woodfordia fruticosa in traditional medicine and endorses the use of bark, while it needs further investigations on the plants growing in different geographic areas.  相似文献   
5.
The purpose of this study was to achieve incorporation of a higher amount of wax during the preparation of ibuprofen beads by a melt solidification technique for better integrity and prolonged drug release by using a combination of waxes. A mixture of cetyl alcohol (CA) and palmitic acid (PA) was used to improve the matrix integrity and drug release. The effect of variables such as CA, PA, and speed of agitation were studied using 33 factorial design. Yield, crushing strength, and drug release were analyzed using response surface methodology. The in vitro dissolution test did not show any significant improvement in the drug release. Scanning electron microscopy (SEM) showed that beads were spherical with a smooth surface, but after dissolution became rough and porous. Differential scanning calorimetry (DSC) studies showed that different solidification and erosion properties of waxes are responsible for the inability of waxes to retard drug release even at higher concentration.  相似文献   
6.
The purpose of this research was to prepare and evaluate sustained release mucoadhesive tablets of Itraconazole. It is practically insoluble in aqueous fluids hence its solid dispersion with Eudragit E100 was prepared by spray drying. This was formulated in matrix of hydrophilic mucoadhesive polymers Carbopol 934P (CP) and Methocel K4M (HPMC). The formulation was optimized using a 32 factorial design. Amounts of CP and HPMC were taken as formulation variables for optimizing response variables i.e. mucoadhesion and dissolution parameters. The optimized mucoadhesive formulation was orally administered to albino rabbits, and blood samples collected were used to determine pharmacokinetic parameters. The solid dispersion markedly enhanced the dissolution rate of itraconazole. The bioadhesive strength of formulation was found to vary linearly with increasing amount of both polymers. Formulations exhibited drug release fitting Peppas model with value of n ranging from 0.61 to 1.18. Optimum combination of polymers was arrived at which provided adequate bioadhesive strength and fairly regulated release profile. The experimental and predicted results for optimum formulations were found to be in close agreement. The formulation showed C max 1898 ± 75.23 ng/ml, t max of the formulation was 2 h and AUC was observed to be 28604.9 ng h/ml  相似文献   
7.
We here for the first time demonstrate an analytical approach for the highly selective and sensitive detection of amoxicillin (Amox) in aqueous medium based on the fluorescence quenching of quantum dots (QDs). The change in fluorescence intensity of mercaptopropionic acid‐capped cadmium sulphide (MPA‐CdS) QDs is attributed to the increasing concentration of Amox. The results show that the fluorescence quenching of QDs by Amox takes place through both static and dynamic types of quenching mechanism. The fluorescence quenching of QDs with increase in concentration of Amox shows the linear range between 5 μg ml?1 and 30 μg ml?1 and the limit of detection (LOD) is 5.19 μg ml?1. There is no interference of excipients, which are commonly present in pharmaceutical formulation and urine samples. For the practical application approach, the developed method has been successfully applied for the determination of Amox in pharmaceutical formulations and urine samples with acceptable results.  相似文献   
8.
9.
The purpose of this research was to reduce the polymer concentration and to obtain reasonable viscosity at a lower concentration of pluronic by the addition of a viscosity modifier. A 20% wt/wt pluronic gel was prepared on a weight basis using the cold method. The effect of the amount of tetracycline and Aerosil on gel properties was studied. The gel was evaluated using different parameters: polarizing microscopy, gelation, gel melting, bioadhesivity, viscosity, drug release, and stability of enzyme. An in vivo study was performed to evaluate the clinical efficiency of the liquid crystalline gel. Addition of Aerosil to the gel favored hexagonal phase formation. Viscosity and bioadhesivity increased with an increase in the concentration of Aerosil. Release of tetracycline was sustained as the concentration of Aerosil increased. Various clinical parameters confirmed the acceptability and efficiency of this gel system. Published: September 15, 2006  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号