首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   9篇
  2021年   3篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   6篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1995年   1篇
  1994年   2篇
  1991年   3篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
排序方式: 共有80条查询结果,搜索用时 640 毫秒
1.
The hypervariable region 1 (HVR1) of the E2 protein of hepatitis C virus (HCV) is a highly heterogeneous sequence that is promiscuously recognized by human sera via binding to amino acid residues with conserved physicochemical properties. We generated a panel of mAbs from mice immunized with HVR1 surrogate peptides (mimotopes) affinity-selected with sera from HCV-infected patients from a phage display library. A high number of specific clones was obtained after immunization with a pool of nine mimotopes, and the resulting mAbs were shown to recognize several 16- and 27-mer peptides derived from natural HVR1 sequences isolated from patients with acute and chronic HCV infection, suggesting that HVR1 mimotopes were efficient antigenic and immunogenic mimics of naturally occurring HCV variants. Moreover, most mAbs were shown to bind HVR1 in the context of a complete soluble form of the E2 glycoprotein, indicating recognition of correctly folded HVR1. In addition, a highly promiscuous mAb was able to specifically capture bona fide viral particles (circulating HCV RNA) as well as rHCV-like particles assembled in insect cells expressing structural viral polypeptides derived from an HCV 1a isolate. These findings demonstrate that it is possible to induce a broadly cross-reactive clonal Ab response to multiple HCV variants. In consideration of the potentially important role of HVR1 in virus binding to cellular receptor(s), such a mechanism could be exploited for induction of neutralizing Abs specific for a large repertoire of viral variants.  相似文献   
2.
The objective of this study was to determine if there is an association between facial hair whorl patterns on the bovine forehead and sperm morphology. Breeding soundness exams were conducted on 219 yearling bulls at three Colorado State University facilities. There were 150 Angus bulls and the remaining bulls were of several different breeds. Hair whorl patterns on the forehead were classified as round or nonround epicenters. Angus bulls with round epicenters had a higher percentage of morphologically normal spermatozoa compared to nonround epicenters (P < 0.05). Hair whorls on Angus bulls were sorted into two extreme groups of round spirals, with rotation or long lines that were longer than the width of the eyes. Bulls with round spirals had a greater percentage of normal spermatozoa compared to bulls with long lines (P < 0.05). Hair whorl pattern on Angus bulls also had an effect on the percentage of bulls that had the minimum threshold value of 70% normal spermatozoa. Eighty percent of Angus bulls with round epicenters had > 70% or more normal spermatozoa compared to 59% with a nonround epicenter (P < 0.01). Fifty percent of Angus bulls with long lines failed because they had < 70% normal spermatozoa. There were no significant differences in the remaining non-Angus bulls. Hair whorl patterns may be useful for making early culling decisions.  相似文献   
3.
Arenaviruses are one of the largest families of human hemorrhagic fever viruses and are known to infect both mammals and snakes. Arenaviruses package a large (L) and small (S) genome segment in their virions. For segmented RNA viruses like these, novel genotypes can be generated through mutation, recombination, and reassortment. Although it is believed that an ancient recombination event led to the emergence of a new lineage of mammalian arenaviruses, neither recombination nor reassortment has been definitively documented in natural arenavirus infections. Here, we used metagenomic sequencing to survey the viral diversity present in captive arenavirus-infected snakes. From 48 infected animals, we determined the complete or near complete sequence of 210 genome segments that grouped into 23 L and 11 S genotypes. The majority of snakes were multiply infected, with up to 4 distinct S and 11 distinct L segment genotypes in individual animals. This S/L imbalance was typical: in all cases intrahost L segment genotypes outnumbered S genotypes, and a particular S segment genotype dominated in individual animals and at a population level. We corroborated sequencing results by qRT-PCR and virus isolation, and isolates replicated as ensembles in culture. Numerous instances of recombination and reassortment were detected, including recombinant segments with unusual organizations featuring 2 intergenic regions and superfluous content, which were capable of stable replication and transmission despite their atypical structures. Overall, this represents intrahost diversity of an extent and form that goes well beyond what has been observed for arenaviruses or for viruses in general. This diversity can be plausibly attributed to the captive intermingling of sub-clinically infected wild-caught snakes. Thus, beyond providing a unique opportunity to study arenavirus evolution and adaptation, these findings allow the investigation of unintended anthropogenic impacts on viral ecology, diversity, and disease potential.  相似文献   
4.
Over the past two centuries, myology (i.e. the basic and clinical science of muscle and muscle disease) has passed through 3 stages of development: the classical period, the modern stage and the molecular era. The classical period spans the last part of nineteenth century and the earlier part of the twentieth century. During this time, several major muscle diseases were clinically and pathologically characterized, including Duchenne muscular dystrophy (DMD), myotonic dystrophy (DM) and facioscapulohumeral dystrophy (FSHD). The modern stage in the second half of the twentieth century is characterized by the adaptation of histo and cytochemical techniques to the study of muscle biopsies. These tools improved the diagnostic accuracy and made possible the identification of new changes and structures (Engel and Cunningham, 1963; Scarlato, 1975).  相似文献   
5.
Induction of multispecific, functional CD4+ and CD8+ T cells is the immunological hallmark of acute self-limiting hepatitis C virus (HCV) infection in humans. In the present study, we showed that gene electrotransfer (GET) of a novel candidate DNA vaccine encoding an optimized version of the nonstructural region of HCV (from NS3 to NS5B) induced substantially more potent, broad, and long-lasting CD4+ and CD8+ cellular immunity than naked DNA injection in mice and in rhesus macaques as measured by a combination of assays, including IFN-gamma ELISPOT, intracellular cytokine staining, and cytotoxic T cell assays. A protocol based on three injections of DNA with GET induced a substantially higher CD4+ T cell response than an adenovirus 6-based viral vector encoding the same Ag. To better evaluate the immunological potency and probability of success of this vaccine, we have immunized two chimpanzees and have compared vaccine-induced cell-mediated immunity to that measured in acute self-limiting infection in humans. GET of the candidate HCV vaccine led to vigorous, multispecific IFN-gamma+CD8+ and CD4+ T lymphocyte responses in chimpanzees, which were comparable to those measured in five individuals that cleared spontaneously HCV infection. These data support the hypothesis that T cell responses elicited by the present strategy could be beneficial in prophylactic vaccine approaches against HCV.  相似文献   
6.
7.
Mutated huntingtin (htt) is ubiquitously expressed in tissues of Huntington's disease (HD) patients. In the brain, the mutated protein leads to neuronal cell dysfunction and death, associated with formation of htt-positive inclusions. Given increasing evidence of abnormalities in HD skeletal muscle, we extensively analyzed primary muscle cell cultures from seven HD subjects (including two unaffected mutation carriers). Myoblasts from presymptomatic and symptomatic HD subjects showed cellular abnormalities in vitro, namely mitochondrial depolarization, cytochrome c release, increased caspase-3, -8, and -9 activities, and defective cell differentiation. Another notable feature was the formation of htt inclusions in differentiated myotubes. This study helps to advance current knowledge about the downstream effects of the htt mutation in human tissues. Further applications may include drug screening using this human cellular model.  相似文献   
8.
9.
We have applied a new fluorescent probe, Nile red, on normal and pathological human muscle derived cultures and compared the results with corresponding human muscle sections. In normal human muscle cultures, Nile red strain has proved useful for visualization of both intracellular lipids and membrane network. Similar patterns have been observed in muscle cultures derived from lipid storage and mitochondrial myopathies. Moreover, abnormalities in pathological muscle cultures could be revealed by establishing more advanced culture systems.  相似文献   
10.
Myotonic dystrophy type 2 (DM2) is a dominantly inherited disorder caused by a CCTG repeat expansion in intron 1 of ZNF9 gene. The size and the somatic instability of DM2 expansion complicate the molecular diagnosis of DM2. In situ hybridization represents a rapid and sensitive method to obtain a definitive diagnosis in few hours, since it allows the direct visualization of the mutant mRNA foci on skeletal muscle sections. This approach makes the muscle biopsy an important tool for definitive diagnosis of DM2. Consequently, a rapid freezing at ultra cold temperature and a good storage of muscle specimens are essential to avoid morphologic alterations and nucleic acids degradation. However incorrect freezing or thawing may accidentally occur. In this work we report that fluorescence in situ hybridization may be applied on improperly frozen or inappropriately stored muscle biopsies since foci of mutant mRNA are well preserved and can still be detected in muscle sections no more useful for histopathological evaluation.Key words: myotonic dystrophy type 2, defrozen muscle biopsy, fluorescence, in situ hybridization, ribonuclear inclusions.Myotonic dystrophy type 2 (DM2) is a neuromuscular disorder due to the unstable (CCTG)n repeat expansion in intron 1 of the zinc finger protein 9 (ZNF9) gene on chromosome 3q21.3 (Liquori et al. 2001). Mutant ZNF9 pre-mRNA is spliced and polyadenylated, and the mRNA is exported to the cytoplasm where normal levels of ZNF9 protein expression occur (Botta et al., 2006; Margolis et al. 2006); however, the expanded repeats remain in cell nuclei as ribonuclear inclusions (Liquori et al. 2001). The DM2 ribonuclear inclusions contain only the CCUG repeat sequence derived from intron 1 but with no detectable flanking intronic RNA (Margolis et al. 2006). CCUG-containing mutant mRNAs form double-stranded hairpin loop structures that bind specific RNA-binding proteins such as muscle-blind-like proteins (MBNLs) that colocalize with ribonuclear inclusions in myonuclei (Mankodi et al., 2001; Fardaei et al., 2002). Sequestration of these proteins which are regulators of alternative splicing, alters the splicing of several pre-mRNA (reviewed by Osborne and Thornton, 2006) such as the insulin receptor (IR) and the chloride channel (ClC1) (Savkur et al., 2004; Charlet et al., 2002; Mankodi et al., 2002). Alterations in IR splicing leads to insulin insensitivity and predisposition to diabetes (Savkur et al. 2004) and alterations in ClC1 splicing results in electrical myotonia (Charlet et al., 2002; Mankodi et al., 2002). Conventional Southern blot analysis is not adequate for a definitive molecular diagnosis in DM2 due to the extremely large size and somatic instability of the expansion mutation (Liquori et al., 2001; Bachinski et al., 2003). The extraordinary somatic instability complicates the analysis of genotype-phenotype correlations including those in the effect of the gender of transmitting parents and anticipation. The copy number of DM2 CCTG is below 30 in phenotypically normal individuals and up 11.000 in patients (Day and Ranum, 2005). A complex genotyping diagnostic procedure is now commonly used consisting of a three-step molecular protocol (Day et al., 2003; Udd et al., 2003). However, a more practical tool to obtain a definitive diagnosis in few hours is represented by in situ hybridization which detects ribonuclear inclusions in cell nuclei of muscle fibers (Cardani et al., 2004; Sallinen et al., 2004). This approach makes muscle biopsy an essential tool for DM2 diagnosis. For this reason muscle specimens should be sent fresh, for rapid freezing, from the operating room to the pathology laboratory.To avoid RNA degradation, biopsies require special precautions with handling of material, such as immediate freezing of fresh tissues, because retrospective genetic analysis is impaired by conventional tissue processing techniques. However, many small hospitals are ill-equipped for snap freezing which requires access to liquid nitrogen or dry ice; thus, frequently outside hospitals provide specimens that are obscured with freeze artefacts because they either were submitted incorrectly or were improperly frozen, at the point of origin prior to shipment. Moreover, an accidental tissue thawing and refreezing may occur (for example power failure of the freezer) causing severe tissue damages and possible RNA degradation.Here we report our experience on DM2 muscle biopsies improperly preserved: these were no more useful for a histopathological analysis since they showed evident morphologic artefacts, but they proved to be still suitable for diagnosis by fluorescence in situ hybridization (FISH) since ribonuclear inclusions were preserved and still detectable on muscle sections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号