首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   40篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   16篇
  2014年   8篇
  2013年   15篇
  2012年   21篇
  2011年   26篇
  2010年   20篇
  2009年   17篇
  2008年   27篇
  2007年   12篇
  2006年   28篇
  2005年   28篇
  2004年   23篇
  2003年   29篇
  2002年   13篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   8篇
  1997年   3篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   6篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1972年   3篇
  1964年   2篇
  1961年   1篇
  1960年   2篇
  1955年   1篇
排序方式: 共有427条查询结果,搜索用时 15 毫秒
1.
Changes in water status, membrane permeability, ethylene production and levels of abscisic acid (ABA) were measured during senescence of cut carnation flowers ( Dianthus caryophyllus L. cv. White Sim) in order to clarify the temporal sequence of physiological events during this post-harvest period. Ethylene production and ABA content of the petal tissue rose essentially in parallel during natural senescence and after treatment of young flowers with exogenous ethylene, indicating that their syntheses are not widely separated in time. However, solute leakage, reflecting membrane deterioration, was apparent well before the natural rise in ethylene and ABA had begun. In addition, there were marked changes in water status of the tissue, including losses in water potential (ψw), and turgor (ψp), that preceded the rise in ABA and ethylene. As senescence progressed, ψw continued to decline, but ψp returned to normal levels. These temporal relationships were less well resolved when senescence of young flowers was induced by treatment with ethylene, presumably because the time-scale had been shortened. Thus changes in membrane permeability and an associated water stress in petal tissue appear to be earlier symptoms of flower senescence than the rises in ABA or ethylene. These observations support the contention that the climacteric-like rise in ethylene production is not the initial or primary event of senescence and that the rise in ABA titre may simply be a response to changes in water status.  相似文献   
2.
3.
Changes in the physical state of microsomal membrane lipids during senescence of rose flower petals (Rosa hyb. L. cv Mercedes) were measured by x-ray diffraction analysis. During senescence of cut flowers held at 22°C, lipid in the ordered, gel phase appeared in the otherwise disordered, liquid-crystalline phase lipids of the membranes. This was due to an increase in the phase transition temperature of the lipids. The proportion of gel phase in the membrane lipids of 2-day-old flowers was estimated as about 20% at 22°C. Ethylene may be responsible, at least in part, for the increase in lipid transition temperature during senescence since aminooxyacetic acid and silver thiosulfate inhibited the rise in transition temperature. When flowers were stored at 3°C for 10 to 17 days and then transferrd to 22°C, gel phase lipid appeared in membranes earlier than in freshly cut flowers. This advanced senescence was the result of aging at 3°C, indicated by increases in membrane lipid transition temperature and ethylene production rate during the time at 3°C. It is concluded that changes in the physical state of membrane lipids are an integral part of senescence of rose petals, that they are caused, at least in part, by ethylene action and that they are responsible, at least in part, for the increase in membrane permeability which precedes flower death.  相似文献   
4.
A 60-fold increase in ethylene content was observed in stem cuttings of chrysanthemum (Chrysanthemum × morifolium Ramat.) held in aero-hydroponics under anoxic conditions during the 8 to 12 days necessary for adventitious root formation. Ethylene, 1-aminocyclopropane-1-carboxylic acid, and 10-(malonylamino) cyclopropane-1-carboxylic acid contents were highest in the immersed portion of the cuttings, but there was substantial ethylene produced by the anoxic, misted portions of the cutting above the liquid. Application of ethylene (10 microliters per liter) to chrysanthemum cuttings stimulated root development in cuttings held in high dissolved oxygen concentrations (8.0 milligrams per liter). Since the application of ethylene did not inhibit rooting in cuttings held at low dissolved oxygen concentrations (2.0 milligrams per liter), the inhibition of rooting under low oxygen concentrations is not mediated by the observed increase in endogenous ethylene content.  相似文献   
5.
A photosynthetic apparatus is present in the epidermis of the bottom zone of the pitcher of Sarracenia purpurea L. ssp. purpurea. This has been demonstrated using conventional light and electron microscopy, as well as fluorescent and immunohistochemical techniques. Red intrinsic fluorescence by these chloroplasts indicates photochemical activity. Antibodies against the coupling factor of chloroplast ATPase and against the subunits of ribulose-bis-phosphate-carboxylase were bound to the epidermal chloroplasts. This has been visualized using a ferritin-isothiocyanate labeled second antibody. These results unequivocally prove the existence of the two main proteins which are associated with the photophosphorylation (membrane protein) and carbon dioxide fixation (stromal protein). The possible implication of this system to interrelationships between the carnivorous plant and aquatic insects inhabiting its leaves is discussed.  相似文献   
6.
Light inhibits while carbon dioxide enhances the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene in oat ( Avena sativa L. cv. Victory) leaf segments. The possibility that the light inhibition is mediated through changes of carbon dioxide has been investigated. The level of CO2 increases or decreases in the sealed incubation vial in darkness or in light, respectively, which can apparently account for the differences in ACC-dependent ethylene production between the dark and light treatments. However, although the evolution of ethylene from ACC in the dark is reduced upon depletion of CO2, the difference between light and dark is still very noticeable. Moreover, the production of the ethylene in CO2-free air in the dark was still higher than in the light, where the concentration of CO2 was 0.01%. It is proposed that the light effect on the conversion of ACC to ethylene is composed of two distinguishable components: one CO2-mediated and the other CO2-independent.  相似文献   
7.
Apparent sucrose uptake. ATPase activity and membrane fluidity changes were studied during the development and senescence of carnation flowers ( Dianthus caryophyllus L., cv. Cerise Royallette). Typical changes associated with senescence of a cut flower, such as respiration, ethylene production and fresh weight, were measured. Concomitant with a rise in respiration and ethylene production and a decline in fresh weight, a sharp decrease in apparent sucrose uptake was observed. Sucrose uptake was pH dependent (pH optimum, 5.5) and influenced by membrane integrity. Apparently, the activity of ATPase is related to sucrose uptake, because similar changes occurred during flower development. In addition, the activity of ATPase was well correlated with membrane fluidity.
It is suggested that sucrose uptake is controlled by ATPase activity, which in turn is modulated by membrane lipid fluidity. The decline in membrane fluidity associated with senescence leads to a corresponding reduction in ATPase activity and sucrose uptake. Further evidence supporting this view comes from experiments in which senescence was enhanced by 1-aminocyclopropane-l-carboxylic acid. It shortened the time to decline in fresh weight, rise in respiration and ethylene production. In parallel, reduction in membrane fluidity, ATPase activity and sucrose uptake were observed.  相似文献   
8.
Escherichia coli cells treated with the essential oil from the plantAchillea fragrantissima released five polypeptides as well as K+ ions into the incubation medium. The oil also inhibited the respiration ofE. coli cells and reduced their ATP content. Electron micrographs showed that oil-treated cells were permeable to uranyl acetate. The effect of the essential oil on the cell membrane is discussed.  相似文献   
9.
A brief pulse of red light (R) given to darkgrown seedlings ofArabidopsis thaliana (L.) Heyn. potentiates rapid synthesis of chlorophyll upon transfer to continuous white light. The time course for potentiation of rapid greening shows that a R pulse in the LF (low fluence) range has maximal effect within a few hours, and that there is a small VLF (very low fluence) component as well. Partial reversal of the effect of R by far-red light (FR) indicates that the pulse acts through phytochrome. As it does in the wild-type (WT), a pulse of R accelerates greening of long-hypocotyl (hy) mutants. The extent of induction by the R pulse was about the same in the WT and in allhy mutants studied. Reversibility by FR was greatly decreased in thehy-1 andhy-2 strains. It is possible that these mutants contain a species of phytochrome with defective phototransformation kinetics. If there is such a defective phytochrome species, it nevertheless appears to be active in the potentiation of rapid greening. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   
10.
Indole-3-acetic acid (IAA) labeled in its carboxyl group was metabolized by tobacco leaf discs (Nicotiana tabacum L. cv. Xanthi) into three metabolites, two of which were preliminarily characterized as a peptide and an ester-conjugated IAA. Reapplication of each of the three metabolites (at 10 M) resulted in a marked stimulation of ethylene production and decarboxylation by the leaf discs. Similarly, these three IAA metab olites could induce elongation of wheat coleoptile segments, which was accompanied by decarboxylation. Both the exogenously supplied esteric and peptidic IAA conjugates were converted by the leaf discs into the same metabolites as free IAA. (1-14C)IAA, applied to an isolated epidermis tissue, was completely metabolized to the esteric and peptidic IAA conjugates. This epidermis tissue showed much higher ethylene production rates and lower decarboxylation rates than did the whole leaf disc.The results suggest that the participation of IAA conjugates in the regulation of various physiological processes depends on the release of free IAA, which is obtained by enzymatic hydrolysis of the conjugates in the tissue. The present study demonstrates biological activity of endogenous IAA conjugates that were synthesized by tobacco leaf discs in response to exogenously supplied IAA.Contribution No. 952-E, 1983 series, from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号