首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15493篇
  免费   1133篇
  国内免费   822篇
  2024年   27篇
  2023年   132篇
  2022年   350篇
  2021年   642篇
  2020年   404篇
  2019年   521篇
  2018年   471篇
  2017年   360篇
  2016年   553篇
  2015年   907篇
  2014年   969篇
  2013年   1188篇
  2012年   1358篇
  2011年   1215篇
  2010年   725篇
  2009年   645篇
  2008年   877篇
  2007年   711篇
  2006年   717篇
  2005年   587篇
  2004年   491篇
  2003年   418篇
  2002年   360篇
  2001年   304篇
  2000年   253篇
  1999年   249篇
  1998年   172篇
  1997年   140篇
  1996年   147篇
  1995年   146篇
  1994年   126篇
  1993年   109篇
  1992年   160篇
  1991年   137篇
  1990年   98篇
  1989年   122篇
  1988年   83篇
  1987年   63篇
  1986年   72篇
  1985年   81篇
  1984年   29篇
  1983年   34篇
  1982年   39篇
  1981年   22篇
  1980年   35篇
  1979年   28篇
  1978年   24篇
  1977年   27篇
  1975年   14篇
  1974年   18篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The role of DNA sequence in determining nucleosome positions in vivo was investigated by comparing the positions adopted by nucleosomes reconstituted on a yeast plasmid in vitro using purified core histones with those in native chromatin containing the same DNA, described previously. Nucleosomes were reconstituted on a 2.5 kilobase pair DNA sequence containing the yeast TRP1ARS1 plasmid with CUP1 as an insert (TAC-DNA). Multiple, alternative, overlapping nucleosome positions were mapped on TAC-DNA. For the 58 positioned nucleosomes identified, the relative positioning strengths and the stabilities to salt and temperature were determined. These positions were, with a few exceptions, identical to those observed in native, remodeled TAC chromatin containing an activated CUP1 gene. Only some of these positions are utilized in native, unremodeled chromatin. These observations suggest that DNA sequence is likely to play a very important role in positioning nucleosomes in vivo. We suggest that events occurring in yeast CUP1 chromatin determine which positions are occupied in vivo and when they are occupied.  相似文献   
2.
3.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
4.
5.
A photoaffinity label, 4-azidobenzoyltrimethionine has been synthesized. It competitively inhibits trimethionine uptake in the yeast C. albicans. Upon UV irradiation it irreversibly and specifically blocks oligopeptide uptake. These results give the first example of photoinhibition of peptide uptake in yeast.  相似文献   
6.
Diabetic nephropathy (DN) as a global health concern is closely related to inflammation and oxidation. Isoliquiritigenin (ISL), a natural flavonoid compound, has been demonstrated to inhibit inflammation in macrophages. Herein, we investigated the effect of ISL in protecting against the injury in STZ-induced type 1 DN and in high glucose-induced NRK-52E cells. In this study, it was revealed that the administration of ISL not only ameliorated renal fibrosis and apoptosis, but also induced the deterioration of renal function in diabetic mice. Mediated by MAPKs and Nrf-2 signaling pathways, respectively, upstream inflammatory response and oxidative stress were neutralized by ISL in vitro and in vivo. Moreover, as further revealed by the results of molecular docking, sirtuin 1 (SIRT1) binds to ISL directly, and the involvement of SIRT1 in ISL-mediated renoprotective effects was confirmed by studies using in vitro models of SIRT1 overexpression and knockdown. In summary, by reducing inflammation and oxidative stress, ISL has a significant pharmacological effect on the deterioration of DN. The benefits of ISL are associated with the direct binding to SIRT1, the inhibition of MAPK activation, and the induction of Nrf-2 signaling, suggesting the potential of ISL for DN treatment.Subject terms: Pharmacology, Molecular biology  相似文献   
7.
8.
9.
The molecular mechanism that controls the proliferation and differentiation of prostate epithelial cells is currently unknown. We previously identified a 44-kDa protein (p44/wdr77) as an androgen receptor-interacting protein that regulates a set of androgen receptor target genes in prostate epithelial cells and prostate cancer. In this study, we found that p44 localizes in the cytoplasm of prostate epithelial cells at the early stage of prostate development when cells are proliferating, and its nuclear translocation is associated with cellular and functional differentiation in adult prostate tissue. We further demonstrated that cytoplasmic p44 protein is essential for proliferation of prostate epithelial cells, whereas nuclear p44 is required for cell differentiation and prostate- specific protein secretion. These studies suggest a novel mechanism by which proliferation and differentiation of prostate epithelial cells are controlled by p44’s location in the cell.  相似文献   
10.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号