首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   834篇
  免费   90篇
  国内免费   1篇
  2023年   5篇
  2022年   17篇
  2021年   33篇
  2020年   24篇
  2019年   24篇
  2018年   35篇
  2017年   26篇
  2016年   35篇
  2015年   41篇
  2014年   61篇
  2013年   64篇
  2012年   69篇
  2011年   74篇
  2010年   34篇
  2009年   41篇
  2008年   54篇
  2007年   53篇
  2006年   46篇
  2005年   34篇
  2004年   37篇
  2003年   40篇
  2002年   27篇
  2001年   4篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1973年   1篇
  1962年   1篇
  1958年   1篇
  1957年   1篇
排序方式: 共有925条查询结果,搜索用时 31 毫秒
1.
Shatsky  I. N. 《Molecular Biology》2001,35(4):536-543
Papers on the mechanisms of translation initiation in mammals studied by reconstruction of initiation complexes from individual components are reviewed. The author points to the constraints of this approach and to the pitfalls ignoring which one might come to erroneous conclusions and even artifacts. In addition, some methods employed in the field as well as some technical problems are discussed in the paper, together with the means of obviating them. The review could be a guidebook for newcomers into this quite labor-consuming field.  相似文献   
2.
3.
The mRNA encoding repressor cI of phage lambda is the only known E. coli message which starts directly with the initiation AUG codon. The ability of in vitro synthesized cI mRNA fragments (150 or 400 nts) to form ternary initiation complexes has been studied using the toeprint method. In the presence of tRNA(Met)f, these fragments are capable of forming the ternary complexes at the 5'-terminal AUG codon not only with 30S subunits but also with undissociated 70S ribosomes (70S tight couples). In the latter case, no binding at other positions of cI mRNA can be detected at all. The starting region of cI mRNA has a single stranded conformation and is highly enriched in A-residues. This feature of cI mRNA RBS is suggested to be the main factor which allows cI mRNA to form the initiation complex with the ribosome. Unlike 30S subunits, the binding to 70S tight couples is not affected by any of the initiation factors, although it is as efficient as that to 30S subunits supplemented with the factors. 30S subunits prefer to associate with the internal RBSs of the preformed mRNA molecules, provided that they are not sequestered by the secondary structure. In contrast, 70S tight couples tend to avoid extra sequences upstream of the codon directed to the P site and occupy a position as close as possible to the 5'-end of the message. This has been found to be the case both for tRNA(Met)f and for elongator tRNA(Glu)2. The structural features of mRNA RBSs which influence their different binding for 30S subunits and 70S ribosomes are discussed.  相似文献   
4.
The type specimen ofGonioloboceras goniolobum (Meek), rediscovered by Spath in the British Museum, is the foundation for a more accurate comparative study of this and other species ofGonioloboceras.Gonioloboceras described asG. goniolobum byElias in 1938 is differentiated asGonioloboceras schmidti, new species. Suture sets (new term) for several growth stages inG. goniolobum (Meek),G. welleriSmith,G. schmidtiElias, G.eliasiMiller &Owen, andG. asiaticumLibrovitch are assembled and used for differentiation of the species.The Kazakhstan goniatite faunule containingG. asiaticum is considered of very late Pennsylvanian age.  相似文献   
5.
Minimal photosynthetic catalytic F1() core complexes, containing equimolar ratios of the and subunits, were isolated from membrane-bound spinach chloroplast CF1 and Rhodospirillum rubrum chromatophore RrF1. A CF1-33 hexamer and RrF1-11 dimer, which were purified from the respective F1() complexes, exhibit lower rates and different properties from their parent F1-ATPases. Most interesting is their complete resistance to inhibition by the general F1 inhibitor azide and the specific CF1 inhibitor tentoxin. These inhibitors were earlier reported to inhibit multisite, but not unisite, catalysis in all sensitive F1-ATPases and were therefore suggested to block catalytic site cooperativity. The absence of this typical property of all F1-ATPases in the 11 dimer is consistant with the view that the dimer contains only a single catalytic site. The 33 hexamer contains however all F1 catalytic sites. Therefore the observation that CF1-33 can bind tentoxin and is stimulated by it suggests that the F1 subunit, which is required for obtaining inhibition by tentoxin as well as azide, plays an important role in the cooperative interactions between the F1-catalytic sites.Abbreviations CF0F1 chloroplast F0F1 - CF1 chloroplast F1 - CF1 chloroplast F1 subunit - CF1 chloroplast F1 subunit - CF1() a complex containing equal amounts of the CF1 and subunits - MF1 mitochondrial F1 - RrF0F1 Rhodospirillum rubrum F0F1 - RrF1 R. rubrum F1 - RrF1 R. rubrum F1 subunit - RrF1 R. rubrum F1 subunit - RrF1() a complex containing equal amounts of the RrF1 and subunits - Rubisco Ribulose-1,5-bisphosphate carboxylase - TF1 thermophilic bacterium PS3 F1  相似文献   
6.
Five models have been built by the ICM method for the Comparative Modeling section of the Meeting on the Critical Assessment of Techniques for Protein Structure Prediction. The targets have homologous proteins with known three-dimensional structure with sequence identity ranging from 25 to 77%. After alignment of the target sequence with the related three-dimensional structure, the modeling procedure consists of two subproblems: side-chain prediction and loop prediction. The ICM method approaches these problems with the following steps: (1) a starting model is created based on the homologous structure with the conserved portion fixed and the noncon-served portion having standard covalent geometry and free torsion angles; (2) the Biased Probability Monte Carlo (BPMC) procedure is applied to search the subspaces of either all the nonconservative side-chain torsion angles or torsion angles in a loop backbone and surrounding side chains. A special algorithm was designed to generate low-energy loop deformations. The BPMC procedure globally optimizes the energy function consisting of ECEPP/3 and solvation energy terms. Comparison of the predictions with the NMR or crystallographic solutions reveals a high proportion of correctly predicted side chains. The loops were not correctly predicted because imprinted distortions of the backbone increased the energy of the near-native conformation and thus made the solution unrecognizable. Interestingly, the energy terms were found to be reliable and the sampling of conformational space sufficient. The implications of this finding for the strategies of future comparative modeling are discussed. © 1995 Wiley-Liss, Inc.  相似文献   
7.
8.
Layered lithium–nickel–cobalt–manganese oxide (NCM) materials have emerged as promising alternative cathode materials owing to their high energy density and electrochemical stability. Although high reversible capacity has been achieved for Ni‐rich NCM materials when charged beyond 4.2 V versus Li+/Li, full lithium utilization is hindered by the pronounced structural degradation and electrolyte decomposition. Herein, the unexpected realization of sustained working voltage as well as improved electrochemical performance upon electrochemical cycling at a high operating voltage of 4.9 V in the Ni‐rich NCM LiNi0.895Co0.085Mn0.02O2 is presented. The improved electrochemical performance at a high working voltage at 4.9 V is attributed to the removal of the resistive Ni2+O rock‐salt surface layer, which stabilizes the voltage profile and improves retention of the energy density during electrochemical cycling. The manifestation of the layered Ni2+O rock‐salt phase along with the structural evolution related to the metal dissolution are probed using in situ X‐ray diffraction, neutron diffraction, transmission electron microscopy, and X‐ray absorption spectroscopy. The findings help unravel the structural complexities associated with high working voltages and offer insight for the design of advanced battery materials, enabling the realization of fully reversible lithium extraction in Ni‐rich NCM materials.  相似文献   
9.
Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage.  相似文献   
10.
This paper presents the design of a resonant system for in vitro studies to emulate the exposure of a monolayer of cells to a wireless power transfer system operating at 13.56 MHz. The design procedure targets a system, which maximizes the specific absorption rate (SAR) uniformity on the plane where the layer is cultured, as well as SAR efficiency (defined as SAR over the input power), within the size constraints of a standard incubator. Three resonant wireless power transfer systems with different commonly used loop/coil geometries (cylindrical with circular and square cross-sections and annular) were compared with assess the configuration maximizing the considered design criteria. The system performance in terms of reflection and transmission coefficients, as well as generated E- and H-fields, was characterized numerically and experimentally inside the incubator. Moreover, SAR was computed at the monolayer level. The system equipped with cylindrical coils with square cross-sections led to a high electromagnetic field uniformity in in vitro biological samples. In particular, the uniformities in E and SAR at the layer level were within 7.9% and 5.5%, respectively. This was achieved with the variation in H below the usually considered ±5% limit. © 2020 Bioelectromagnetics Society  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号