首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   8篇
  2013年   8篇
  2012年   11篇
  2011年   9篇
  2010年   8篇
  2009年   10篇
  2008年   7篇
  2007年   8篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1963年   1篇
排序方式: 共有118条查询结果,搜索用时 171 毫秒
1.
2.
While there has been considerable progress in designing protein–protein interactions, the design of proteins that bind polar surfaces is an unmet challenge. We describe the computational design of a protein that binds the acidic active site of hen egg lysozyme and inhibits the enzyme. The design process starts with two polar amino acids that fit deep into the enzyme active site, identifies a protein scaffold that supports these residues and is complementary in shape to the lysozyme active-site region, and finally optimizes the surrounding contact surface for high-affinity binding. Following affinity maturation, a protein designed using this method bound lysozyme with low nanomolar affinity, and a combination of NMR studies, crystallography, and knockout mutagenesis confirmed the designed binding surface and orientation. Saturation mutagenesis with selection and deep sequencing demonstrated that specific designed interactions extending well beyond the centrally grafted polar residues are critical for high-affinity binding.  相似文献   
3.
Rab-GTPase regulates the fusion between two specific vesicles. It is well documented that, for their biological function, Rab proteins need to be prenylated for attachment to the vesicle membrane. In contrast, we showed in the present investigation that SopE, a type III secretory protein of Salmonella, translocates onto Salmonella-containing phagosomes (LSP) and mediates the recruitment of non-prenylated Rab5 (Rab5:DeltaC4) on LSP in GTP form. Simultaneously, SopE present in infected cell cytosol acts as an Rab5-specific exchange factor and converts the inactive Rab-GDP to the GTP form. The non-prenylated Rab5 subsequently promoted efficient fusion of LSP with early endosomes. This is the first demonstration that a prenylation-deficient Rab protein retains biological activity and can promote vesicle fusion, if it is recruited on the membrane by some other method.  相似文献   
4.
Tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a chemical carcinogen thought to be involved in the initiation of lung cancer in smokers. NNK is metabolically activated to methylating and pyridyloxobutylating species that form promutagenic adducts with DNA nucleobases, e.g. O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-POB-dG). O6-POB-dG is a strongly mispairing DNA lesion capable of inducing both G→A and G→T base changes, suggesting its importance in NNK mutagenesis and carcinogenesis. Our earlier investigations have identified the ability of O6-POB-dG to hinder DNA digestion by snake venom phosphodiesterase (SVPDE), a 3′-exonuclease commonly used for DNA ladder sequencing and as a model enzyme to test nuclease sensitivity of anti-sense oligonucleotide drugs. We now extend our investigation to three other enzymes possessing 3′-exonuclease activity: bacteriophage T4 DNA polymerase, Escherichia coli DNA polymerase I, and E.coli exonuclease III. Our results indicate that, unlike SVPDE, 3′-exonuclease activities of these three enzymes are not blocked by O6-POB-dG lesion. Conformational analysis and molecular dynamics simulations of DNA containing O6-POB-dG suggest that the observed resistance of the O6-POB-dG lesion to SVPDE-catalyzed hydrolysis may result from the structural changes in the DNA strand induced by the O6-POB group, including C3′-endo sugar puckering and the loss of stacking interaction between the pyridyloxobutylated guanine and its flanking bases. In contrast, O6-methylguanine lesion used as a control does not induce similar structural changes in DNA and does not prevent its digestion by SVPDE.  相似文献   
5.
PELP1 (proline-, glutamic acid-, and leucine-rich protein-1 (also referred to as MNAR, or modulator of nongenomic activity of estrogen receptor)), a recently identified novel coactivator of estrogen receptors, is widely expressed in a variety of 17 beta-estradiol (E2)-responsive reproductive tissues and is developmentally regulated in mammary glands. pRb (retinoblastoma protein), a cell cycle switch protein, plays a fundamental role in the proliferation, development, and differentiation of eukaryotic cells. To study the putative function of PELP1, we established stable MCF-7 breast cancer cell lines overexpressing PELP1. PELP1 overexpression hypersensitized breast cancer cells to E2 signaling, enhanced progression of breast cancer cells to S phase, and led to persistent hyperphosphorylation of pRb in an E2-dependent manner. Using phosphorylation site-specific pRb antibodies, we identified Ser-807/Ser-811 of pRb as a potential target site of PELP1. Interestingly, PELP1 was discovered to be physiologically associated with pRb and interacted via its C-terminal pocket domain, and PELP1/pRb interaction could be modulated by antiestrogen agents. Using mutant pRb cells, we demonstrated an essential role for PELP1/pRb interactions in the maximal coactivation functions of PELP1 using cyclin D1 as one of the targets. Taken together, these findings suggest that PELP1, a steroid coactivator, plays a permissive role in E2-mediated cell cycle progression, presumably via its regulatory interaction with the pRb pathway.  相似文献   
6.
The importance of glucan chains that pass through both the amorphous and crystalline lamellae (tie chains) in the organization of corn starch granules was studied using heat‐moisture treatment (HMT), annealing (ANN), and iodine binding. Molecular structural analysis showed that hylon starches (HV, HVII, and HVIII) contained higher proportion of intermediate glucan chains (HVIII > HVII > HV) than normal corn (CN) starch. Wide angle X‐ray scattering revealed that on HMT, the extent of polymorphic transition in hylon starches decreased with increasing proportion of intermediate and long chains. Iodine treated hylon starches exhibited increased order in the V‐type polymorphism as evidenced by the intense peak at 20° 2θ and the strong reflection intensity at 7.5° 2θ and the extent of the change depended on the type of hylon starch. DSC results showed that the gelatinization enthalpy of CN and waxy corn starch (CW) remained unchanged after ANN. However, hylon starches showed a significant increase in enthalpy with more distinct endotherms after ANN. It can be concluded that tie chains influence the organization of crystalline lamellae in amylose extender mutant starches. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 871–885, 2014.  相似文献   
7.
8.
We report here the crystal structure at 2.0 A resolution of the AGR_C_4470p protein from the Gram-negative bacterium Agrobacterium tumefaciens. The protein is a tightly associated dimer, each subunit of which bears strong structural homology with the two domains of the heme utilization protein ChuS from Escherichia coli and HemS from Yersinia enterocolitica. Remarkably, the organization of the AGR_C_4470p dimer is the same as that of the two domains in ChuS and HemS, providing structural evidence that these two proteins evolved by gene duplication. However, the binding site for heme, while conserved in HemS and ChuS, is not conserved in AGR_C_4470p, suggesting that it probably has a different function. This is supported by the presence of two homologs of AGR_C_4470p in E. coli, in addition to the ChuS protein.  相似文献   
9.
Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF_0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP_1951), and a 12-stranded β-barrel with a novel fold (V. parahaemolyticus VPA1032).  相似文献   
10.
Clostridial neurotoxins are comprised of botulinum (BoNT) and tetanus (TeNT), which share significant structural and functional similarity. Crystal structures of the binding domain of TeNT complexed with disialyllactose (DiSia) and a tri-peptide Tyr-Glu-Trp (YEW) have been determined to 2.3 and 2.2 A, respectively. Both DiSia and YEW bind in a shallow cleft region on the surface of the molecule in the beta-trefoil domain, interacting with a set of common residues, Asp1147, Asp1214, Asn1216, and Arg1226. DiSia and YEW binding at the same site in tetanus toxin provides a putative site that could be occupied either by a ganglioside moiety or a peptide. Soaking experiments with a mixture of YEW and DiSia show that YEW competes with DiSia, suggesting that YEW can be used to block ganglioside binding. A comparison with the TeNT binding domain in complex with small molecules, BoNT/A and /B, provides insight into the different modes of ganglioside binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号