首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   1篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有59条查询结果,搜索用时 296 毫秒
1.
Semisynthetic derivatives of daunomycinone with 7,9-isopropylacetal, 7-O-methyl, 7-O-(4-penten-2-yl), and 7-O-(2-hydroxyethyl) substituents were converted byStreptomyces peucetius var.caesius (an adriamycin-blocked mutant) into 7-deoxy-13-dihydrodaunomycinone, while daunomycinone was transformed into 13-dihydrodaunomycinone (predominantly) and 7-deoxy-13-dihydrodaunomycinone.S. coeruleorubidus mutants 24–74 (accumulating aclavinone derivatives instead of daunomycin and related compounds) and 96-85 (producing no anthracycline substances), andS. aureofaciens B-96 (a tetracycline-blocked mutant) transformed the above substrates into the corresponding 13-dihydro derivatives, with the exception of 7,9-isopropylacetal daunomycinone which remained intact. 7-O-Propyn-1-yl daunomycinone was not transformed by any of the strains used under the conditions.  相似文献   
2.
Biosynthesis of monensins a and b: the role of isoleucine   总被引:3,自引:0,他引:3  
Isoleucine added to the cultivation medium of Streptomyces cinnamonensis C-100-5 induced a relative increase of the production of monensin B at the expense of monensin A. U-14C-Isoleucine was found not to be a specific monensin B precursor. The incorporation of 1-13C-2-methylbutyrate into monensins A and B showed the label to be evenly incorporated in both products at carbon atoms originating from C(1) of propionate. In regulatory mutants insensitive to 2-amino-3-chlorobutyrate isoleucine influenced the production of monensins only slightly but strains resistant to 2-aminobutyrate and norleucine decreased their total production by 2-12% in the presence of isoleucine which was associated with a decrease of monensin A content by 14-52%. The inhibitory effect of isoleucine on the biosynthesis of valine, a specific precursor of the butyrate unit of monensin A, is discussed.  相似文献   
3.
Anthracyclines   总被引:2,自引:2,他引:0  
  相似文献   
4.
5.
Eurotium repens mycelium cultivated under static conditions was used to isolate and identify metabolities—echinulin, physcion, erythroglaucin, flavoglaucin and asperentin; the filtrate of the culture yielded asperentin 8-methylether. The broadest biological activity spectrum was displayed by asperentin which had antibacterial and antifungal effects and, at a concentration of 86 ώg/ml, caused 50 % mor7 tality inArtemia saline larvae. The highest cytotoxicity towards HeLa cells was found in physcion which caused 50 % growth inhibition at a concentration of 0.1 ώg/ml.  相似文献   
6.
Streptomyces caelestis DSM 40084 produces two osmolytes, viz. 2-O-(alpha-D-glucopyranosyl)-zeta-glyceric acid (GG) and trehalose. Both compounds were isolated and identified by nuclear magnetic resonance spectroscopy and mass spectrometry. A very sensitive regulation of the cell osmolytes was demonstrated in exponentially growing cultures. The intracellular levels of GG and trehalose increased 2x in response to a step change of medium osmolarity caused by 0.3% NaCl. 1H NMR analysis of the cell extracts did not confirm the presence of additional osmolytes. GG is a S. caelestis metabolite commonly released from the cells; its concentration reached 3 g/L during the cultivation in a yeast extract--(NH4)2SO4-glycerol medium. This is the first report on the occurrence of the ionic osmolyte GG in the genus Streptomyces and on its free excretion to the medium.  相似文献   
7.
We purified an extracellular pyranose dehydrogenase (PDH) from the basidiomycete fungus Agaricus xanthoderma using ammonium sulfate fractionation and ion-exchange and hydrophobic interaction chromatography. The native enzyme is a monomeric glycoprotein (5% carbohydrate) containing a covalently bound FAD as its prosthetic group. The PDH polypeptide consists of 575 amino acids and has a molecular mass of 65 400 Da as determined by MALDI MS. On the basis of the primary structure of the mature protein, PDH is a member of the glucose-methanol-choline oxidoreductase family. We constructed a homology model of PDH using the 3D structure of glucose oxidase from Aspergillus niger as a template. This model suggests a novel type of bi-covalent flavinylation in PDH, 9-S-cysteinyl, 8-alpha-N3-histidyl FAD. The enzyme exhibits a broad sugar substrate tolerance, oxidizing structurally different aldopyranoses including monosaccharides and oligosaccharides as well as glycosides. Its preferred electron donor substrates are D-glucose, D-galactose, L-arabinose, and D-xylose. As shown by in situ NMR analysis, D-glucose and D-galactose are both oxidized at positions C2 and C3, yielding the corresponding didehydroaldoses (diketoaldoses) as the final reaction products. PDH shows no detectable activity with oxygen, and its reactivity towards electron acceptors is rather limited, reducing various substituted benzoquinones and complexed metal ions. The azino-bis-(3-ethylbenzthiazolin-6-sulfonic acid) cation radical and the ferricenium ion are the best electron acceptors, as judged by the catalytic efficiencies (k(cat)/K(m)). The enzyme may play a role in lignocellulose degradation.  相似文献   
8.
Mycelial cultures of 76 strains of lignocellulose-degrading basidiomycete fungi were screened for the activity of pyranose dehydrogenase, a novel sugar oxidoreductase recently detected in Agaricus bisporus. Of these fungi, 37 strains belonging to seven phylogenetically related genera of mostly litter-decomposing Agaricales were positive for the dehydrogenase, based on activity assays towards D-glucose with 1,4-benzoquinone or ferricenium ion as electron acceptors, and on TLC/HPLC analyses of the reaction products. Lack of activity with O(2) as the oxidant, specificity for C-3 of D-glucose, and active extracellular secretion of the enzyme were used as criteria to differentiate pyranose dehydrogenase from pyranose 2-oxidase (EC 1.1.3.10), known to be produced by numerous wood-rotting fungi. Extracellular pyranose dehydrogenase from Macrolepiota rhacodes was heavily glycosylated. The enzyme was characterized as a 78-kDa flavoprotein under denaturing conditions and a 76-kDa native protein using gel filtration. This enzyme had a maximum extracellular activity of 4.1 U ml(-1) in 39-day liquid cultures. It exhibited broad selectivity for sugar substrates and oxidized D-glucose (K(m)=1.82) exclusively at C-3 to 3-dehydro-D-glucose (D-ribo-hexos-3-ulose), in contrast to pyranose dehydrogenases from Agaricus species, which acted at both C-3 and C-2 of D-glucose. The N-terminal sequence, AVVYRHPDEL, showed significant similarity with that reported for A. bisporus.  相似文献   
9.
Aims: Production of minor asukamycin congeners and its new derivatives by combination of targeted genetic manipulations with specific precursor feeding in the producer of asukamycin, Streptomyces nodosus ssp. asukaensis. Methods and Results: Structural variations of manumycins lie only in the diverse initiation of the ‘upper’ polyketide chain. Inactivation of the gene involved in the biosynthesis of cyclohexanecarboxylic acid (CHC) turned off the production of asukamycin in the mutant strain and allowed an increased production of other manumycins with the branched end of the upper chain. The ratio of produced metabolites was further affected by specific precursor feeding. Precursor‐directed biosynthesis of a new asukamycin analogue (asukamycin I, 28%) with linear initiation of the upper chain was achieved by feeding norleucine to the mutant strain. Another asukamycin analogue with the unbranched upper chain (asukamycin H, 14%) was formed by the CHC‐deficient strain expressing a heterologous gene putatively involved in the formation of the n‐butyryl‐CoA starter unit of manumycin A. Conclusions: Combination of the described techniques proved to be an efficient tool for the biosynthesis of minor or novel manumycins. Significance and Impact of the Study: Production of two novel asukamycin derivatives, asukamycins H and I, was achieved. Variations appeared in the upper polyketide chain, the major determinant of enzyme‐inhibitory features of manumycins, affecting their cancerostatic or anti‐inflammatory features.  相似文献   
10.
Summary. A novel natural peptide ergot alkaloid γ-ergokryptinine containing norleucine has been isolated from ergot sclerotia of the field-growing parasitic fungus Claviceps purpurea CCM 8059. Its structure was deduced from the NMR and mass spectral data. The final structural proof was provided by the crystal structure determination, which is the first X-ray structure of a natural Nle-containing secondary metabolite. The conformations of three ergopeptinines: γ-ergokryptinine, ergoladinine, and α-ergokryptinine were compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号