首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   16篇
  2021年   2篇
  2015年   5篇
  2013年   8篇
  2012年   3篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   12篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   7篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   7篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1974年   1篇
  1964年   1篇
  1952年   1篇
  1951年   1篇
  1950年   2篇
  1949年   1篇
  1942年   1篇
  1935年   1篇
  1934年   1篇
  1929年   1篇
  1923年   2篇
  1922年   2篇
  1919年   2篇
  1914年   1篇
  1911年   1篇
  1910年   1篇
  1904年   1篇
  1897年   1篇
排序方式: 共有156条查询结果,搜索用时 359 毫秒
1.
Reductive dechlorination of 1,2-dichloroethane (1,2-DCA) to ethylene and chloroethane (CA) by crude cell extracts of Methanobacterium thermoautotrophicum delta H with H2 as the electron donor was stimulated by Mg-ATP. The heterodisulfide of coenzyme M (CoM) and 7-mercaptoheptanoylthreonine phosphate together with Mg-ATP partially inhibited ethylene production but stimulated CA production compared Mg-ATP alone. The pH optimum for the dechlorination was 6.8 (at 60 degrees C). Michaelis-Menten kinetics for initial product formation rates with different 1,2-DCA concentrations indicated the enzymatic character of the dechlorination. Apparent Kms for 1,2-DCA of 89 and 119 microM and Vmaxs of 34 and 20 pmol/min/mg of protein were estimated for ethylene and CA production, respectively. 3-Bromopropanesulfonate, a specific inhibitor for methyl-CoM reductase, completely inhibited dechlorination of 1,2-DCA. Purified methyl-CoM reductase, together with flavin adenine dinucleotide and a crude component A fraction which reduced the nickel of factor F430 in methyl-CoM reductase, converted 1,2-DCA to ethylene and CA with H2 as the electron donor. In this system, methyl-CoM reductase was also able to transform its own inhibitor 2-bromoethanesulfonate to ethylene.  相似文献   
2.
The role of bacterial cell wall hydrophobicity in adhesion   总被引:25,自引:0,他引:25  
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   
3.
Concentrated cell suspensions of methanogenic bacteria reductively dechlorinated 1,2-dichloroethane via two reaction-mechanisms: a dihalo-elimination yielding ethylene and two hydrogenolysis reactions yielding chloroethane and ethane, consecutively. The transformation of chloroethane to ethane was inhibited by 1,2-dichloroethane. Stimulation of methanogenesis caused an increase in the amount of dechlorination products formed, whereas the opposite was found when methane formation was inhibited. Cells of Methanosarcina barkeri grown on H2/CO2 converted 1,2-dichloroethane and chloroethane at higher rates than acetate or methanol grown cells.Abbreviations BrES 2-bromoethanesulfonic acid - CA chloroethane - 1,2-DCA 1,2-dichloroethane - F430 Ni(II)tetrahydro-(12, 13)-corphin with an uroporphinoid (III) ligand skeleton  相似文献   
4.
A microscopically pure enrichment culture of a gram-negative anaerobic bacterium, in the present article referred to as PER-K23, was isolated from an anaerobic packed-bed column in which tetrachloroethene (PCE) was reductively transformed to ethane via trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), chloroethene, and ethene. PER-K23 catalyzes the dechlorination of PCE via TCE to cis-1,2-DCE and couples this reductive dechlorination to growth. H2 and formate were the only electron donors that supported growth with PCE or TCE as an electron acceptor. The culture did not grow in the absence of PCE or TCE. Neither O2, NO3-, NO2-, SO4(2-), SO3(2-), S2O3(2-), S, nor CO2 could replace PCE or TCE as an electron acceptor with H2 as an electron donor. Also, organic electron acceptors such as acetoin, acetol, dimethyl sulfoxide, fumarate, and trimethylamine N-oxide and chlorinated ethanes, DCEs, and chloroethene were not utilized. PER-K23 was not able to grow fermentatively on any of the organic compounds tested. Transferring the culture to a rich medium revealed that a contaminant was still present. Dechlorination was optimal between pH 6.8 and 7.6 and a temperature of 25 to 35 degrees C. H2 consumption was paralleled by chloride production, PCE degradation, cis-1,2-DCE formation, and growth of PER-K23. Electron balances showed that all electrons derived from H2 or formate consumption were recovered in dechlorination products and biomass. Exponential growth could be achieved only in gently shaken cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
5.
Toxic aromatic pollutants, concentrated in industrial wastes and contaminated sites, can potentially be eliminated by low cost bioremediation systems. Most commonly, the goal of these treatment systems is directed at providing optimum environmental conditions for the mineralization of the pollutants by naturally occurring microflora. Electrophilic aromatic pollutants with multiple chloro, nitro and azo groups have proven to be persistent to biodegradation by aerobic bacteria. These compounds are readily reduced by anaerobic consortia to lower chlorinated aromatics or aromatic amines but are not mineralized further. The reduction increases the susceptibility of the aromatic molecule for oxygenolytic attack. Sequencing anaerobic and aerobic biotreatment steps provide enhanced mineralization of many electrophilic aromatic pollutants. The combined activity of anaerobic and aerobic bacteria can also be obtained in a single treatment step if the bacteria are immobilized in particulate matrices (e.g. biofilm, soil aggregate, etc.). Due to the rapid uptake of oxygen by aerobes and facultative bacteria compared to the slow diffusion of oxygen, oxygen penetration into active biofilms seldom exceeds several hundred micrometers. The anaerobic microniches established inside the biofilms can be applied to the reduction of electron withdrawing functional groups in order to prepare recalcitrant aromatic compounds for further mineralization in the aerobic outer layer of the biofilm.Aside from mineralization, polyhydroxylated and chlorinated phenols as well as nitroaromatics and aromatic amines are susceptible to polymerization in aerobic environments. Consequently, an alternative approach for bioremediation systems can be directed towards incorporating these aromatic pollutants into detoxified humic-like substances. The activation of aromatic pollutants for polymerization can potentially be encouraged by an anaerobic pretreatment step prior to oxidation. Anaerobic bacteria can modify aromatic pollutants by demethylating methoxy groups and reducing nitro groups. The resulting phenols and aromatic amines are readily polymerized in a subsequent aerobic step.  相似文献   
6.
7.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here.Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.  相似文献   
8.
The genomes of the Betaproteobacteria Alicycliphilus denitrificans strains BC and K601T have been sequenced to get insight into the physiology of the two strains. Strain BC degrades benzene with chlorate as electron acceptor. The cyclohexanol-degrading denitrifying strain K601T is not able to use chlorate as electron acceptor, while strain BC cannot degrade cyclohexanol. The 16S rRNA sequences of strains BC and K601T are identical and the fatty acid methyl ester patterns of the strains are similar. Basic Local Alignment Search Tool (BLAST) analysis of predicted open reading frames of both strains showed most hits with Acidovorax sp. JS42, a bacterium that degrades nitro-aromatics. The genomes include strain-specific plasmids (pAlide201 in strain K601T and pAlide01 and pAlide02 in strain BC). Key genes of chlorate reduction in strain BC were located on a 120 kb megaplasmid (pAlide01), which was absent in strain K601T. Genes involved in cyclohexanol degradation were only found in strain K601T. Benzene and toluene are degraded via oxygenase-mediated pathways in both strains. Genes involved in the meta-cleavage pathway of catechol are present in the genomes of both strains. Strain BC also contains all genes of the ortho-cleavage pathway. The large number of mono- and dioxygenase genes in the genomes suggests that the two strains have a broader substrate range than known thus far.  相似文献   
9.
The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 μM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 μmol of CT g of volatile suspended solids−1 day−1. The main end products of CT degradation were CO2 and Cl, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products.  相似文献   
10.
The etiology of the autoimmune disease systemic lupus erythematosus is not known, but aberrant apoptosis and/or insufficient clearance of apoptotic material have been assigned a pivotal role. During apoptosis, nucleosomes and several endogenous danger-associated molecular patterns are incorporated in blebs. Recent data indicate that apoptotic blebs induce maturation of myeloid dendritic cells, resulting in IL-17 production by T cells. In this review we summarize current knowledge on the role of dendritic cells in the pathogenesis of systemic lupus erythematosus with special emphasis on the uptake of apoptotic blebs by dendritic cells, and the subsequent induction of Th17 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号