首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
In the mouse, a powerful paradigm of early life stress, infant maternal separation (IMS), can trigger emotional and cognitive dysfunctions in adulthood similar to those found in humans with a history of childhood adversity. The magnitude of IMS effects differs among diverse inbred strains suggesting an interaction between the genetic background of pups and the maternal care they received. Here, we investigated this interaction with studies on reciprocal F1 hybrid mice of the stress‐susceptible Balb/c and the resilient C57Bl/6 strains that were either raised by Balb/c mothers (low maternal care) or by C57Bl/6 mothers (higher maternal care) with or without IMS exposure. The ultrasonic vocalization response to isolation was recorded from infant F1 pups, and their emotional, executive cognitive and epigenetic phenotypes were assessed in adulthood. These studies showed that, regardless of the maternal care received, the emotional phenotype of F1 hybrids was not significantly affected by IMS exposure. However, F1 pups raised by Balb/c (but not C57Bl/6) mothers during IMS exposure exhibit deficits in working memory and attention‐set‐shifting in adulthood. They also exhibit reduced histone deacetylase 1 levels at promotors of brain‐derived neurotrophic factor and early growth response 2 genes, and abnormally high induction of expression of these genes during cognitive testing. As one of affected genes was previously shown to associate with the Balb/c and the other with the C57Bl/6 genetic background, these findings indicate that both parental alleles interact with the maternal environment to modulate the cognitive and epigenetic phenotypes of F1 mice exposed to the IMS.  相似文献   
2.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.  相似文献   
3.
In this study, sensor surface functionalization allowing the repetitive use of a sensing device was evaluated for antibody‐based detection of living bacteria using an optical planar Bragg grating sensor. To achieve regenerable immobilization of bacteria specific antibodies, the heterobifunctional cross‐linker N‐succinimidyl 3‐(2‐pyridyldithio) propionate (SPDP) was linked to an aminosilanized sensor surface and subsequently reduced to expose sulfhydryl groups enabling the covalent conjugation of SPDP‐activated antibodies via disulfide bonds. The immobilization of a capture antibody specific for Staphylococcus aureus on the sensor surface as well as specific binding of S. aureus could be monitored, highlighting the applicability of optical sensors for the specific detection of large biological structures. Reusability of bacteria saturated sensors was successfully demonstrated by cleaving the antibody along with bound bacteria through reduction of disulfide bonds and subsequent re‐functionalization with activated antibody, resulting in comparable sensitivity towards S. aureus.

  相似文献   

4.
N is a tissue-specific, Sm-epitope bearing, snRNP-associated protein found predominantly in brain. The cDNA sequence encoding human N is compared to those for rat N and human B/B'. The amino acid sequences of human and rat N are 100% conserved. Although the amino acid sequences of N and B/B' are very similar to each other, B/B' contains 50 amino acids which are not present in N. On Northern blots the cDNAs encoding N and B/B' recognize two different RNA species. A comparison of the codon usage, as specified by the open reading frames of N and B/B' as well as results from Southern blots, show that N and B/B' are derived from different genes.  相似文献   
5.
The acute administration of dopamine D(1) receptor agonists induces the expression of the immediate early gene c-fos. In wild type mice, this induction is completely abolished by pretreatment with the D(1)-selective antagonist SCH23390, and pretreatment with the D(2)-like receptor antagonist eticlopride reduces the levels of c-fos expressed in response to D(1) receptor stimulation. Mice deficient for the dopamine D(3) receptor express levels of D(1) agonist-stimulated c-fos immunoreactivity that are lower than c-fos levels of their wild type littermates. Moreover, the acute blockade of D(2) receptors in D(3) mutant mice further reduces c-fos expression levels. These data indicate that the basal activity of both D(2) and D(3) receptors contributes to D(1) agonist-stimulated c-fos responses. The findings therefore indicate that not only D(2) but also D(3) receptors play a role in dopamine-regulated gene expression.  相似文献   
6.
The serotonin 2C receptor (5-HT2CR), a Gq-protein-coupled neurotransmitter receptor, exists in multiple isoforms that result from RNA editing of five exonic adenosines that are converted to inosines. In the adult brain, editing of 5-HT2C pre-mRNA exhibits remarkable plasticity in response to environmental and neurochemical stimuli. Here, we investigated two potential mechanisms underlying these plastic changes in adult 5-HT2CR editing phenotypes in vivo: activation of phospholipase C (PLC) and alternative splicing of pre-mRNA encoding the editing enzymes ADAR1 and ADAR2. Studies on two inbred strains of mice (C57Bl/6 and Balb/c) revealed that sustained stimulation of PLC—a downstream effector of activated Gαq protein—increased editing of forebrain neocortical 5-HT2C pre-mRNA at two sites known to be targeted by ADAR2. Moreover, changes in relative expression of the alternatively spliced “a” and “b” mRNA isoforms of ADAR1 and ADAR2 also correlate with changes in 5-HT2CR editing. The site-specific changes in 5-HT2CR editing detected in mice with different “a” over “b” ADAR mRNA isoform ratios only partially overlap with those evoked by sustained PLC activation and are best explained by the increased editing efficiency of ADAR1. Thus, activation of PLC and alternative splicing of ADAR pre-mRNA have both overlapping and specific roles in modulating 5-HT2CR editing phenotypes.  相似文献   
7.
A J Griffith  C Schmauss  J Craft 《Gene》1992,114(2):195-201
The cDNA and partial genomic nucleotide (nt) sequences were derived for the mouse Sm B polypeptide and compared to the cDNA and genomic sequences encoding human Sm B. The deduced amino acid (aa) sequences from the mouse and human genes are identical with the exception of a single conserved aa substitution, accounting for the ability of anti-Sm antibodies to recognize the Sm polypeptides from a broad range of species. The genomic sequence of mouse B gene is similar to the human B genomic locus that extends from exon 6 to exon 7. These loci include conservation of both 3' alternative splice sites and putative branch points required to process B and B' mRNAs in human cells. However, the nt sequence downstream from the putative distal 3' splice junction and single nt flanking the 3' splice site consensus sequence, differ between mouse and human B. This results in a murine mRNA with a different predicted secondary structure around the distal 3' splice site when compared to humans. Thus, secondary structural constraints in the mRNA or changes in the exon sequence might prevent recognition of this alternative splice site to form B' mRNA in murine tissues.  相似文献   
8.
All somatic mammalian cells carry two copies of chromosomes (diploidy), whereas organisms with a single copy of their genome, such as yeast, provide a basis for recessive genetics. Here we report the generation of haploid mouse ESC lines from parthenogenetic embryos. These cells carry 20 chromosomes, express stem cell markers, and develop into all germ layers in vitro and in vivo. We also developed a reversible mutagenesis protocol that allows saturated genetic recessive screens and results in homozygous alleles. This system allowed us to generate a knockout cell line for the microRNA processing enzyme Drosha. In a forward genetic screen, we identified Gpr107 as a molecule essential for killing by ricin, a toxin being used as a bioweapon. Our results open the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale.  相似文献   
9.
The existence of G protein-coupled receptor (GPCR) dimers and/or oligomers has been demonstrated in heterologous systems using a variety of biochemical and biophysical assays. While these interactions are the subject of intense research because of their potential role in modulating signaling and altering pharmacology, evidence for the existence of receptor interactions in vivo is still elusive because of a lack of appropriate methods to detect them. Here, we adapted and optimized a proximity ligation assay (PLA) for the detection in brain slices of molecular proximity of two antigens located on either the same or two different GPCRs. Using this approach, we were able to confirm the existence of dopamine D2 and adenosine A2A receptor complexes in the striatum of mice ex vivo.  相似文献   
10.
Mice lacking dopamine D2 receptors exhibit a significantly decreased agonist-promoted forebrain neocortical D1 receptor activation that occurs without changes in D1 receptor expression levels. This raises the possibility that, in brains of D2 mutants, a substantial portion of D1 receptors are uncoupled from their G protein, a phenomenon known as receptor desensitization. To test this, we examined D1-agonist-stimulated [35S]GTPgammaS binding (in the presence and absence of protein phosphatase inhibitors) and cAMP production (in the presence and absence of pertussis toxin) in forebrain neocortical tissues of wild-type mice and D2-receptor mutants. These studies revealed a decreased agonist-stimulated G-protein activation in D2 mutants. Moreover, whereas protein phosphatase 1/2A (PP1/2A) and 2B (PP2B) inhibitors decrease [35S]GTPgammaS binding in a concentration-dependent manner in wild type, they have either no (PP2B) or only partial (PP1/2A) effects in D2 mutants. Furthermore, for D2 mutants, immunoprecipitation experiments revealed increased basal and D1-agonist-stimulated phosphorylation of D1-receptor proteins at serine residues. Finally, D1 immunoprecipitates of both wild type and D2 mutants also contain protein kinase A (PKA) and PP2B immunoreactivities. In D2 mutants, however, the catalytic activity of the immunoprecipitated PP2B is abolished. These data indicate that neocortical D1 receptors are physically linked to PKA and PP2B and that the increased phosphorylation of D1 receptors in brains of D2 mutants is due to defective dephosphorylation of the receptor rather than increased kinase-mediated phosphorylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号