首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   20篇
  2023年   4篇
  2022年   2篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   7篇
  2010年   4篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
  1961年   1篇
排序方式: 共有138条查询结果,搜索用时 46 毫秒
1.
C Wicker  G A Scheele  A Puigserver 《Biochimie》1988,70(9):1277-1283
Lipase activity, rates of biosynthesis of lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) and amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) as well as concentrations of their corresponding mRNAs were measured in the pancreatic tissue of rats fed isocaloric and isoprotein diets with inverse changes in the amounts of lipids and carbohydrates. A control diet (3% sunflower oil--62% starch) and three lipid-rich diets (10% sunflower oil--46.2% starch, 25% sunflower oil--12.5% starch and 30% sunflower oil--1.25% starch) were fed to rats for 10 days. Ingestion of the 10% lipid diet already resulted in a 1.4-fold increase in lipase activity while a 2.4-fold increase was observed with the other 2 high-lipid low-carbohydrate diets. Similarly, 1.3- and 3.1-fold increases in the total rate of protein synthesis were measured in pancreatic lobules of rats fed 10 and 25% or 30% lipid diets, respectively, as compared with control animals. While absolute lipase synthesis showed an important increase during the dietary manipulation (1.7- and 5.9-fold, respectively), amylase synthesis was significantly lower (1.1- and 1.5-fold, respectively). The level of lipase mRNA, as measured by dot-blot hybridization with the corresponding specific cDNA, showed a 2.2-fold increase (10% lipid diet) and a 3.9-fold increase (25% lipid diet), whereas the level of amylase mRNA showed only 1.1- and 1.3-fold increases under the same experimental conditions. These data demonstrated that protein-specific synthesis rates more accurately reflected pancreatic adaptive states than tissue levels of enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
2.
Summary Immobilized mycelia regenerated from immobilized protoplasts isolated from lignin-degrading Basiodiomycetes have been shown to be able to decompose specifically 14C-labelled dehydropolymers of coniferylalcohol (DHP-lignin) and monomeric lignin-related compounds more intensively than native mycelium, by decarboxylation, demethylation, ring and side chain cleavage. Protoplasts of two white rot fungi were immobilized by entrapment in Na- alginate gel and remained intact after the immobilization procedure. Within the first 3 days of incubation in culture medium, regeneration of hyphal cells occurred. Since hyphal cells regenerated from protoplasts within gel beads were hindered from stretching by the matrix, the microbial immobilized cells differed from native mycelium in terms of their morphology. The time course and extent of lignin degradation by native mycelium and regenerated mycelium of the examined white rot fungi also differed, a sign that there may also be differences between them in terms of the physiology of lignin degradation.  相似文献   
3.
Calmodulin was isolated and purified to homogeneity from dog pancreas. Highly purified subcellular fractions were prepared from dog pancreas by zonal sucrose-density ultracentrifugation and assayed for their ability to bind 125I-calmodulin in vitro. Proteins contained in these fractions were also examined for binding of 125I-calmodulin after their separation by polyacrylamide-gel electrophoresis in SDS. Calmodulin-binding proteins were detected in all subcellular fractions except the zymogen granule and zymogen-granule membrane fractions. One calmodulin-binding protein (Mr 240,000), observed in a washed smooth-microsomal fraction, has properties similar to those of alpha-fodrin. The postribosomal-supernatant fraction contained three prominent calmodulin-binding proteins, with apparent Mr values of 62,000, 50,000 and 40,000. Calmodulin-binding proteins, prepared from a postmicrosomal-supernatant fraction by Ca2+-dependent affinity chromatography on immobilized calmodulin, exhibited calmodulin-dependent phosphodiesterase, protein phosphatase and protein kinase activities. In the presence of Ca2+ and calmodulin, phosphorylation of smooth-muscle myosin light chain and brain synapsin and autophosphorylation of a Mr-50,000 protein were observed. Analysis of the protein composition of the preparation by SDS/polyacrylamide-gel electrophoresis revealed a major protein of Mr 50,000 which bound 125I-calmodulin. This protein shares characteristics with the calmodulin-dependent multifunctional protein kinase (kinase II) recently observed to have a widespread distribution. The possible role of calmodulin-binding proteins and calmodulin-regulated enzymes in the regulation of exocrine pancreatic protein synthesis and secretion is discussed.  相似文献   
4.
5.
Studies on the mechanism of assembly of tobacco mosaic virus.   总被引:6,自引:0,他引:6       下载免费PDF全文
Sedimentation and proton binding studies on the endothermic self-association of tobacco mosaic virus (TMV) protein indicate that the so-called "20S" sedimenting protein is an interaction system involving at least the 34-subunit two-turn yield cylindrical disk aggregate and the 49-subunit three-turn helical rod. The pH dependence of this overall equilibrium suggests that disk formation is proton-linked through the binding of protons to the two-turn helix which is not present as significant concentrations near pH 7. There is a temperature-induced intramolecular conformation change in the protein leading to a difference spectrum which is complete in 5 x 10(-6) s at pH 7 and 20 degrees C and is dominated at 300 nm by tryptophan residues. Kinetics measurements of protein polymerization, from 10(-6) to 10(3) s, reveal three relaxation processes at pH 7.0, 20 degrees C, 0.10 M ionic strength K (H) PO4. The fastest relaxation time is a few milliseconds and represents reactions within the 4S protein distribution. The second fastest relaxation is 50-100 x 10(-3) s and represents elementary polymerization steps involved in the formation of the approximately 20 S protein. Analysis of the slowest relaxation, approximately 5 x 10(4) s, suggests that this very slow formation of approximately 20 S protein may be dominated by some first order process in the overall dissociation of approximately 20S protein. Sedimentation measurements of the rate of TMV reconstitution, under the same conditions, show by direct measurements of 4S and approximately 20S incorporation at various 4S to approximately 20S weight ratios that the relative rate of approximately 20S incorporation decreases almost linearly, from 0 to 50% 4S. There appears to be one or more regions of TMV-RNA, approximately 1-1.5 kilobases long, which incorporates approximately 20S protein exclusively. Solutions of approximately 95-100% approximately 20S protein have been prepared for the first time and used for reconstitution with RNA. Such protein solutions yield full size TMV, but at a slower rate than if 4S protein is added. Thus the elongation reaction in TMV assembly, following nucleation with approximately 20S protein, is not exclusively dependent upon the presence of either 4S or approximately 20S protein aggregates. The initial, maximum, rate of reconstitution increases about threefold when the protein composition is changed from 5% to 30% 4S protein, at constant total protein concentration at pH 7.0, 20 degrees C in 0.10 M ionic strength K (H)PO4. The probable binding frame at the internal assembly nucleation site of TMV-RNA has been determined by measuring the association constants for the binding of various trinucleoside diphosphates to helical TMV protein rods. The -CAG-AAG-AAG-sequence at the nucleation site is capable of providing at least 10-14 kcal/mol of sites of binding free energy for the nucleation event in TMV self-assembly.  相似文献   
6.
The mechanism by which secretory proteins are segregated within the cisternal space of microsomal vesicles was studied using dog pancreas mRNA which directs the synthesis of 14 well-characterized nonglycosylated pancreatic exocrine proteins. In the absence of microsomal membranes, each of the proteins was synthesized as larger polypeptide chains (presecretory proteins). 1,000-2,000 daltons larger than their authentic counterparts as judged by polyacrylamide gel electrophoresis in SDS. Conditions optimal for the study of reconstituted rough microsomes in the reticulocyte lysate system were examined in detail using mRNA and microsomal membranes isolated from dog pancreas. Functional reconstitution of rough microsomes was considerably more efficient in the presence of micrococcal nuclease- treated membranes than in the presence of EDTA-treated membranes. Analysis for segregation of nascent secretory proteins by microsomal vesicles, using post-translational incubation in the presence of trypsin and chymotrypsin, 50 μg/ml each, was shown to be inadequate, because of the disruption of vesicles by protease activity. Addition of 1-3 mM tetracaine or 1 mM dibucaine stabilized microsomal membranes incubated in the presence of trypsin and chymotrypsin at either 0 degrees or 22 degrees C. Each of the pancreatic presecretory proteins studied was correctly processed to authentic secretory proteins by nuclease-treated microsomal membranes, as judged by both one-dimensional and two-dimensional gel electophoresis. Post-translational addition of membranes did not result in either segregation or processing of nascent polypeptide chains. Post- translational proteolysis, carried out in the presence of 3 mM tetracaine, indicated that each of the 14 characterized dog pancreas secretory proteins was quantitatively segregated by nuclease-treated microsomal vesicles. Segregation of nascent secretory proteins was irreversible, since radioactive amylase, as well as the other labeled secretory proteins, remained quantitatively sequestered in microsomal vesicles during a 90-min incubation at 22 degrees C after the cessation of protein synthesis. Studies employing synchronized protein synthesis and delayed addition of membranes indicated that all pancreatic presecretory proteins contain amino terminal peptide extensions. These peptide extensions are shown to mediate the cotranslational binding of presecretory proteins to microsomal membranes and the transport of nascent secretory proteins to the vesicular space. The maximum chain lengths which, during synthesis, allow segregation of nascent polypeptide chains varied between 61 (pretrypsinogen 2 + 3) and 88 (preprocarboxypeptidase A1) amino acid residues among dog pancreas presecretory proteins. Reconstitution studies using homologous and heterologous mixtures of mRNA (dog, guinea pig, and rat pancreas; rat liver) and micrococcal nuclease-treated microsomal membranes (dog, guinea pig, and rat liver; dog pancreas), in the presence of placental ribonuclease inhibitor, suggest that the translocation mechanism described is common to the rough endoplasmic reticulum of all mammalian tissues.  相似文献   
7.
Analysis of human pancreatic juice in two dimensions using isoelectric focusing followed by sodium dodecyl sulfate gel electrophoresis indicated that human pancreatic trypsinogen (IEPn = 6.4) rapidly autoactivated in the absence of the secretory trypsin inhibitor. The addition of 4 to 6 m urea to the protein sample and 8 m urea to the isoelectric focusing gel inhibited this autoactivation process and allowed the analysis of human exocrine pancreatic proteins. Thirteen discrete proteins were separated by the two-dimensional gel procedure including two forms each for trypsinogen, proelastase, and procarboxypeptidase A, and single forms each for amylase, lipase, procarboxypeptidase B, and chymotrypsinogen. The kinetics of inhibition of human trypsin by 8 m urea in the presence of ethylene glycol bis(β-aminoethyl ether)N,N′-tetraacetic acid indicated that samples containing active proteases could also be analyzed by this procedure.  相似文献   
8.
Many studies have documented the individual effects of variables such as vegetation, long‐term climate and short‐term weather on biodiversity. Few, however, have explicitly explored how interactions among these major drivers can influence species abundance. We used data from a 15‐year study (2002–2017) in the endangered temperate woodlands of south‐eastern Australia to test hypotheses associated with the effects of vegetation type, long‐term climate and short‐term weather on population trajectories of seven species of (largely) nocturnal mammals and birds. Despite prolonged drought conditions, there was a significant increase in the abundance of some species over time (e.g. the Eastern Grey Kangaroo). It is possible that destocking of domestic livestock may have reduced competition with Kangaroos, thereby facilitating increases in abundance. The Common Brushtail Possum and Common Ringtail Possum were significantly less likely to occur in replanted woodlands, possibly because of the paucity of nesting sites. We found no evidence that replanted woodlands are refuges for exotic pest species like the European Rabbit and Red Fox. Short‐ and long‐term rainfall and vegetation type had important independent and combined effects on animal abundance. That is, responses to periods of high short‐term rainfall were dependent on vegetation type and whether sites occurred in long‐term climatically wet versus climatically dry locations. For example, the Red Fox responded positively to high levels of short‐term rainfall, but only at climatically dry sites. Our results highlight the complementary value of different vegetation types across the landscape and the context‐specific responses of animals to short‐term fluctuations in moisture availability. They also underscore the value of long‐term monitoring at a landscape scale for examining how multiple interacting factors influence trends in animal abundance.  相似文献   
9.
Carbohydrate oxidases are biotechnologically interesting enzymes that require a tightly or covalently bound cofactor for activity. Using the industrial workhorse Corynebacterium glutamicum as the expression host, successful secretion of a normally cytosolic FAD cofactor-containing sorbitol–xylitol oxidase from Streptomyces coelicolor was achieved by using the twin-arginine translocation (Tat) protein export machinery for protein translocation across the cytoplasmic membrane. Our results demonstrate for the first time that, also for cofactor-containing proteins, a secretory production strategy is a feasible and promising alternative to conventional intracellular expression strategies.The secretory expression of recombinant proteins can offer significant process advantages over cytosolic production strategies, since secretion into the growth medium greatly facilitates downstream processing and therefore can significantly reduce the costs of producing a desired target protein (Quax, 1997). And, in fact, the enormous secretion capacity of certain Gram-positive bacteria (e.g. various Bacillus species) has been used since many years in industry for the production of mainly host-derived secretory proteins such as proteases and amylases, resulting in amounts of more than 20 g l−1 culture medium (Harwood and Cranenburg, 2008). In contrast, attempts to use Bacillus species for the secretory production of heterologous proteins have often failed or led to disappointing results, a fact that, among other reasons, could in many cases be attributed to the presence of multiple cell wall-associated and secreted proteases that rapidly degraded the heterologous target proteins (Li et al., 2004; Sarvas et al., 2004; Westers et al., 2011). Therefore, an increasing need exists to explore alternative host systems with respect to their ability to express and secrete problematic and/or complex heterologous proteins of biotechnological interest.So far, the Gram-positive bacterium Corynebacterium glutamicum has been used in industry mainly for the production of amino acids and other low-molecular weight compounds (Leuchtenberger et al., 2005; Becker and Wittmann, 2011; Litsanov et al., 2012). However, various recent reports have indicated that C. glutamicum might likewise possess a great potential as an alternative host system for the secretory expression of foreign proteins. Corynebacterium glutamicum belongs to a class of diderm Gram-positive bacteria that, besides the cytoplasmic membrane, possess an additional mycolic acid-containing outer membrane-like structure that acts as an extremely efficient permeability barrier for hydrophilic compounds (Hoffmann et al., 2008; Zuber et al., 2008). Despite this fact, an efficient secretion of various heterologous proteins into the growth medium of this microorganism has been observed (e.g. Billman-Jacobe et al., 1995; Meissner et al., 2007; Kikuchi et al., 2009; Tateno et al., 2009; Tsuchidate et al., 2011).In bacteria, two major export pathways exist for the transport of proteins across the cytoplasmic membrane that fundamentally differ with respect to the folding status of their respective substrate proteins during the actual translocation step. The general secretion (Sec) system transports its substrates in a more or less unfolded state and folding takes places on the trans side of the membrane after the actual transport event (Yuan et al., 2010; du Plessis et al., 2011). In contrast, the alternative twin-arginine translocation (Tat) system translocates its substrates in a fully folded form and therefore provides an attractive alternative for the secretory production of proteins that cannot be produced in a functional form via the Sec route (Brüser, 2007). Carbohydrate oxidases are biotechnologically interesting enzymes (van Hellemond et al., 2006) that are excluded from Sec-dependent secretion since they depend on a tightly or covalently bound cofactor for their activity and, for this reason, require that their folding and cofactor insertion has to take place in the cytosol. Because C. glutamicum has shown to be an excellent host for the Tat-dependent secretion of the cofactor-less model protein GFP (Meissner et al., 2007; Teramoto et al., 2011), we now asked whether it is likewise possible to secrete a cofactor-containing enzyme into the supernatant of C. glutamicum using the same protein export route.As a model protein, we chose the sorbitol–xylitol oxidase (SoXy) from Streptomyces coelicolor, a normally cytosolic enzyme that possesses a covalently bound FAD molecule as cofactor (Heuts et al., 2007; Forneris et al., 2008). FAD is incorporated into the apoprotein in a post-translational and self-catalytic process that only occurs if the polypeptide chain has adopted a correctly folded structure (Heuts et al., 2007; 2009). To direct SoXy into the Tat export pathway of C. glutamicum, we constructed a gene encoding a TorA–SoXy hybrid precursor in which SoXy is fused to the strictly Tat-specific signal peptide of the periplasmic Escherichia coli Tat substrate trimethylamine N-oxide reductase (TorA) (Fig. 1) which, in our previous study, has been proven to be a functional and strictly Tat-specific signal peptide also in C. glutamicum (Meissner et al., 2007). The corresponding torAsoxy gene was cloned into the expression vector pEKEx2 (Eikmanns et al., 1991) under the control of an IPTG-inducible Ptac promotor. After transformation of the resulting plasmid pTorA–SoXy into the C. glutamicum ATCC13032 wild-type strain, two independent colonies of the resulting recombinant C. glutamicum (pTorA–SoXy) strain and, as a control, a colony of a strain that contained the empty expression vector without insert [C. glutamicum (pEKEx2)] were grown in CGXII medium (Keilhauer et al., 1993) at 30°C for 16 h in the presence of 1 mM IPTG. Subsequently, the proteins present in the culture supernatants were analysed by SDS-PAGE followed by staining with Coomassie blue. As shown in Fig. 2, in the supernatants of the pTorA–SoXy-containing cells (lanes 3 and 4), a prominent protein band of approximately 44 kDa can be detected, the size of which is very similar to the calculated molecular mass (44.4 kDa) of SoXy. Since this band is completely lacking in the supernatant of the control strain (lane 2), this strongly suggests that this band corresponds to SoXy that has been secreted into the culture supernatant of C. glutamicum (pTorA–SoXy). And, in fact, this suggestion was subsequently confirmed in a direct way by MALDI-TOF mass spectrometry after extraction of the protein out of the gel followed by tryptic digestion (Schaffer et al., 2001) (data not shown).Open in a separate windowFigure 1The TorA–SoXy hybrid precursor protein. Upper part: Schematic drawing of the relevant part of the pTorA–SoXy expression vector. Ptac, IPTG-inducible tac promotor. RBS, ribosome binding site. To maintain the authentic TorA signal peptidase cleavage site, the first four amino acids of the mature TorA protein (black bar) were retained in the TorA–SoXy fusion protein. White bar: TorA signal peptide (TorASP); grey bar: SoXy (amino acids 2–418). Lower part: Amino acid sequence of the signal peptide and early mature region of the TorA–SoXy hybrid precursor. The twin-arginine consensus motif of the TorA signal peptide is underlined. The four amino acids derived from mature TorA are shown in italics. The signal peptidase cleavage site is indicated by an arrowhead.Open in a separate windowFigure 2Secretion of SoXy into the growth medium of C. glutamicum. Cells of C. glutamicum ATCC13032 containing the empty vector pEKEx2 and two independently transformed colonies of C. glutamicum (pTorA–SoXy) were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with CGXII medium (Keilhauer et al., 1993) and inoculated to an OD600 of 0.5 in 5 ml of fresh CGXII medium containing 1 mM IPTG. After 16 h of further growth at 30°C, the supernatant fractions were prepared as described previously (Meissner et al., 2007). Samples corresponding to an equal number of cells were subjected to SDS-PAGE followed by staining with Coomassie blue. Lane 1, molecular mass marker (kDa). Lane 2, C. glutamicum (pEKEx2); lanes 3 and 4, C. glutamicum (pTorA–SoXy). The position of the secreted SoXy protein is indicated by an arrow.Next, the supernatant of C. glutamicum (pTorA–SoXy) was analysed for SoXy enzyme activity by measuring the production of H2O2 that is formed during the enzymatic conversion of sorbitol to fructose (Meiattini, 1983). Six hours after induction of gene expression by 1 mM IPTG, an enzymatic activity of 10.3 ± 1.6 nmol min−1 ml−1 could be determined in the supernatant of C. glutamicum (pTorA–SoXy). In contrast, no such activity was found in the supernatant of the control strain C. glutamicum (pEKEx2). From these results we conclude that we have succeeded in the secretion of enzymatically active and therefore FAD cofactor-containing SoXy into the culture supernatant of C. glutamicum.Finally, we examined whether the secretion of SoXy had in fact occurred via the Tat pathway of C. glutamicum. Plasmid pTorA–SoXy was used to transform C. glutamcium ATCC13032 wild type and a C. glutamicum ΔTatAC mutant strain that lacks two essential components of the Tat transport machinery and therefore does not possess a functional Tat translocase (Meissner et al., 2007). The corresponding cells were grown in BHI medium (Difco) at 30°C in the presence of 1 mM IPTG for 6 h. Subsequently, the proteins present in the cellular and the supernatant fractions of the corresponding cells were analysed by SDS-PAGE followed by Western blotting using SoXy-specific antibodies. As shown in Fig. 3, polypeptides corresponding to the unprocessed TorA–SoXy precursor and some minor smaller degradation products of it can be detected in the cellular fractions of both the wild-type and the ΔTatAC deletion strains (lanes 3 and 5). In the supernatant fraction of the Tat+ wild-type strain (lane 4), but not that of the ΔTatAC strain (lane 6), a polypeptide corresponding to mature SoXy is present, clearly showing that export of SoXy in the wild-type strain had occurred in a strictly Tat-dependent manner. Another noteworthy finding is the observation that hardly any mature SoXy protein accumulated in the cellular fraction of the Tat+ wild-type strain (lane 3), indicating that SoXy is, after its Tat-dependent translocation across the cytoplasmic membrane and processing by signal peptidase, rapidly transported out of the intermembrane space across the mycolic acid-containing outer membrane into the supernatant. However, the mechanism of how proteins cross this additional permeability barrier is completely unknown so far (Bitter et al., 2009).Open in a separate windowFigure 3Transport of TorA–SoXy occurs in a strictly Tat-dependent manner. Plasmid pTorA–SoXy was transformed into C. glutamcium ATCC13032 (Tat+) and a C. glutamicum ΔTatAC mutant that lacks a functional Tat translocase (Meissner et al., 2007). As a control, the empty pEKEx2 expression vector was transformed into C. glutamicum ATCC13032 (Tat+). The respective strains were grown overnight in 5 ml of BHI medium (Difco) at 30°C. The cells were washed once with BHI and resuspended in 20 ml of fresh BHI medium containing 1 mM IPTG. After 6 h of further growth at 30°C, the cellular (C) and supernatant (S) fractions were prepared as described previously (Meissner et al., 2007). Samples of the C and S fractions were subjected to SDS-PAGE followed by immunoblotting using anti-SoXy antibodies as indicated at the top of the figure. Lanes 1 and 2: C. glutamicum ATCC13032 (pEKEx2); lanes 3 and 4: C. glutamicum ATCC13032 (pTorA–SoXy); lanes 5 and 6: C. glutamicum ΔTatAC (pTorA–SoXy). Asterisk: TorA–SoXy precursor; arrow: secreted SoXy protein. The positions of molecular mass markers (kDa) are indicated at the left margin of the figure.To the best of our knowledge, our results represent the first documented example of the successful secretion of a normally cytosolic, cofactor-containing protein via the Tat pathway in an active form into the culture supernatant of a recombinant expression host. Our results clearly show that, also for this biotechnologically very interesting class of proteins, a secretory production strategy can be a promising alternative to conventional intracellular expression strategies. Besides for SoXy and other FAD-containing carbohydrate oxidases, for which various applications are perceived by industry such as the in situ generation of hydrogen peroxide for bleaching and disinfection performance in technical applications, their use in the food and drink industry, as well as their use in diagnostic applications and carbohydrate biosynthesis processes (Oda and Hiraga, 1998; Murooka and Yamashita, 2001; van Hellemond et al., 2006; Heuts et al., 2007), a secretory production strategy might now be an attractive option also for biotechnologically relevant enzymes that are used as biocatalysts in chemo-enzymatic syntheses and that possess cofactors other than FAD, such as pyridoxal-5′-phosphate (PLP)-dependent ω-transaminases (Mathew and Yun, 2012) or various thiamin diphosphate (TDP)-dependent enzymes (Müller et al., 2009).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号