首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   23篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   6篇
  2016年   10篇
  2015年   11篇
  2014年   14篇
  2013年   24篇
  2012年   32篇
  2011年   27篇
  2010年   16篇
  2009年   8篇
  2008年   21篇
  2007年   15篇
  2006年   15篇
  2005年   22篇
  2004年   13篇
  2003年   15篇
  2002年   16篇
  2001年   4篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1985年   2篇
  1981年   2篇
  1980年   1篇
  1975年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
1.
Whole-body vibration (WBV), which is widely used as a type of exercise, involves the use of vibratory stimuli and it is used for rehabilitation and sports performance programmes. This study aimed to investigate the effect of WBV treatment in a chronic pain model after 10 WBV sessions. An animal model (chronic pain) was applied in 60 male Wistar rats (±180 g, 12 weeks old) and the animals were treated with low intensity exercise (treadmill), WBV (vibrating platform), and a combined treatment involving both. The controls on the platform were set to a frequency of 42 Hz with 2 mm peak-to-peak displacement, g ≈ 7, in a spiral mode. Before and after the vibration exposure, sensitivity was determined. Aβ-fibers-mediated mechanical sensitivity thresholds (touch-pressure) were measured using a pressure meter. C-fibers-mediated thermal perception thresholds (hot pain) were measured with a hot plate. After each session, WBV influenced the discharge of skin touch-pressure receptors, reducing mechanical sensitivity in the WBV groups (P < 0.05). Comparing the conditions “before vs. after”, thermal perception thresholds (hot pain) started to decrease significantly after the third WBV session (P < 0.05). WBV decreases mechanical hyperalgesia after all sessions and thermal sensitivity after the third session with the use of WBV.  相似文献   
2.
The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside.  相似文献   
3.
Adrenergic receptors (ARs) are receptors of noradrenalin and adrenalin, of which there are nine different subtypes. In particular, β2 adrenergic receptor (β2-AR) is known to be related to the restoration and maintenance of homeostasis in bone and cardiac tissues; however, the functional role of signaling through β2-AR in periodontal ligament (PDL) tissue has not been fully examined. In this report, we investigated that β2-AR expression in PDL tissues and their features in PDL cells. β2-AR expressed in rat PDL tissues and human PDL cells (HPDLCs) derived from two different patients (HPDLCs-2G and -3S). Rat PDL tissue with occlusal loading showed high β2-AR expression, while its expression was downregulated in that without loading. In HPDLCs, β2-AR expression was increased exposed to stretch loading. The gene expression of PDL-related molecules was investigated in PDL clone cells (2-23 cells) overexpressing β2-AR. Their gene expression and intracellular cyclic adenosine monophosphate (cAMP) levels were also investigated in HPDLCs treated with a specific β2-AR agonist, fenoterol (FEN). Overexpression of β2-AR significantly promoted the gene expression of PDL-related molecules in 2 to 23 cells. FEN led to an upregulation in the expression of PDL-related molecules and increased intracellular cAMP levels in HPDLCs. In both HPDLCs, inhibition of cAMP signaling by using protein kinase A inhibitor suppressed the FEN-induced gene expression of α-smooth muscle actin. Our findings suggest that the occlusal force is important for β2-AR expression in PDL tissue and β2-AR is involved in fibroblastic differentiation and collagen synthesis of PDL cells. The signaling through β2-AR might be important for restoration and homeostasis of PDL tissue.  相似文献   
4.
The GABAergic synapses, a primary inhibitory synapse in the mammalian brain, is important for the normal development of brain circuits, and for the regulation of the excitation-inhibition balance critical for brain function from the developmental stage throughout life. However, the molecular mechanism underlying the formation, maintenance, and modulation of GABAergic synapses is less understood compared to that of excitatory synapses. Quantum dot-single particle tracking (QD-SPT), a super-resolution imaging technique that enables the analysis of membrane molecule dynamics at single-molecule resolution, is a powerful tool to analyze the behavior of proteins and lipids on the plasma membrane. In this review, we summarize the recent application of QD-SPT in understanding of GABAergic synaptic transmission. Here we introduce QD-SPT experiments that provide further insights into the molecular mechanism supporting GABAergic synapses. QD-SPT studies revealed that glutamate and Ca2+ signaling is involved in (a) the maintenance of GABAergic synapses, (b) GABAergic long-term depression, and GABAergic long-term potentiation, by specifically activating signaling pathways unique to each phenomenon. We also introduce a novel Ca2+ imaging technique to describe the diversity of Ca2+ signals that may activate the downstream signaling pathways that induce specific biological output.  相似文献   
5.
Botulinum neurotoxin (BoNT) binds to nontoxic nonhemagglutinin (NTNHA) protein in a pH-dependent manner, and yields the protease-resistant BoNT/NTNHA complex. Here, we screened short peptides that bind to the serotype D NTNHA (NTNHA-D) using random phage display technique. NTNHA was fixed onto electrode of quartz crystal microbalance (QCM) apparatus, and then the phages displaying random heptapeptides were exposed to the NTNHA-D under the acidic condition. After rinsing with acidic buffer, the released phages under the alkaline condition were collected. The binding and release of the phage were monitored by the frequency shift on the QCM. As a result of the screening, 16 were selected as peptides that bind to NTNHA-D. The selected peptides do not share any conserved sequence, but tend to be rich in basic and/or hydrophobic amino acid. This would explain the binding manner of the BoNT to the NTNHA protein.  相似文献   
6.
Escherichia coli YggS is a member of the highly conserved uncharacterized protein family that binds pyridoxal 5′-phosphate (PLP). To assist with the functional assignment of the YggS family, in vivo and in vitro analyses were performed using a yggS-deficient E. coli strain (ΔyggS) and a purified form of YggS, respectively. In the stationary phase, the ΔyggS strain exhibited a completely different intracellular pool of amino acids and produced a significant amount of l-Val in the culture medium. The log-phase ΔyggS strain accumulated 2-ketobutyrate, its aminated compound 2-aminobutyrate, and, to a lesser extent, l-Val. It also exhibited a 1.3- to 2.6-fold increase in the levels of Ile and Val metabolic enzymes. The fact that similar phenotypes were induced in wild-type E. coli by the exogenous addition of 2-ketobutyrate and 2-aminobutyrate indicates that the 2 compounds contribute to the ΔyggS phenotypes. We showed that the initial cause of the keto acid imbalance was the reduced availability of coenzyme A (CoA); supplementation with pantothenate, which is a CoA precursor, fully reversed phenotypes conferred by the yggS mutation. The plasmid-borne expression of YggS and orthologs from Bacillus subtilis, Saccharomyces cerevisiae, and humans fully rescued the ΔyggS phenotypes. Expression of a mutant YggS lacking PLP-binding ability, however, did not reverse the ΔyggS phenotypes. These results demonstrate for the first time that YggS controls Ile and Val metabolism by modulating 2-ketobutyrate and CoA availability. Its function depends on PLP, and it is highly conserved in a wide range species, from bacteria to humans.  相似文献   
7.
Compared with ethanol, butanol has more advantageous physical properties as a fuel, and biobutanol is thus considered a promising biofuel material. Biobutanol has often been produced by Clostridium species; however, because they are strictly anaerobic microorganisms, these species are challenging to work with. We attempted to introduce the butanol production pathway into yeast Saccharomyces cerevisiae, which is a well-known microorganism that is tolerant to organic solvents. 1-Butanol was found to be produced at very low levels when the butanol production pathway of Clostridium acetobutylicum was simply introduced into S. cerevisiae. The elimination of glycerol production pathway in the yeast contributed to the enhancement of 1-butanol production. In addition, by the use of trans-enoyl-CoA reductase in the engineered pathway, 1-butanol production was markedly enhanced to yield 14.1 mg/L after 48 h of cultivation.  相似文献   
8.
Rhododendrol is a phenolic compound that shows a tyrosinase‐dependent toxicity for melanocytes and occasionally induces a vitiligo‐like skin depigmentation. The post‐tyrosinase mechanisms determining melanocyte death or survival, however, are far from clear. Here, we find that rhododendrol treatment leads to a reduction in the levels of cellular glutathione but also induces a cellular antioxidant response that eventually increases glutathione levels. We further find that rhododendrol toxicity is enhanced when glutathione levels are experimentally reduced and alleviated when glutathione levels are increased. Hence, it appears that the size of the preexisting glutathione pool along with the capacity to supply glutathione via the antioxidant response determines whether melanocytes survive or die after rhododendrol exposure. It is conceivable, therefore, that rhododendrol‐induced leukoderma depends on the capacity to maintain appropriate glutathione levels and that enhancement of glutathione levels may preserve a patient's melanocytes and potentially help in repigmentation.  相似文献   
9.
In implantology, when financial or biological feasibility limitations appear, it is necessary to use prostheses with geometries that deviate from the conventional, with a pontic in the absence of an intermediate implant. The aim of this study was analyze and understand the general differences in the stresses generated in implants, components and infrastructures according to the configuration of the prosthesis over three or two implants. Thus, this paper analyzes the von Mises equivalent stresses (VMES) of ductile materials on their external surfaces. The experimental groups: Regular Splinted Conventional Group (RCG), which had conventional infrastructures on 3 regular-length Morse taper implants (4x11?mm); Regular Splinted Pontic Group (RPG), which had infrastructures with intermediate pontics on 2 regular-length Morse taper implants (4x11?mm). The simulations of the groups were created with Ansys Workbench 10.0 software. The results revealed that the RPG presented greater areas of possible fragility due to higher stress concentrations, for example, in the cervical area of the union between the implant and component the top platform of the abutment, as well as greater coverage of the stress by the cervical implant threads. The RPG infrastructure was also more affected by stresses in the connection areas between the prostheses and on the occlusal surface. There is an advantage to using prostheses supported by a greater number of implants (RCG) because this decreases the stress in the analyzed structures and consequently improves stress dissipation to the supporting bone, which would preserve the system.  相似文献   
10.
Function of Hsp70s such as DnaK of the Escherichia coli cytoplasm and Ssc1 of the mitochondrial matrix of Saccharomyces cerevisiae requires the nucleotide release factors, GrpE and Mge1, respectively. A loop, which protrudes from domain IA of the DnaK ATPase domain, is one of six sites of interaction revealed in the GrpE:DnaK co-crystal structure and has been implicated as a functionally important site in both DnaK and Ssc1. Alanine substitutions for the amino acids (Lys-108 and Arg-213 of Mge1) predicted to interact with the Hsp70 loop were analyzed. Mge1 having both substitutions was able to support growth in the absence of the essential wild-type protein. K108A/R213A Mge1 was able to stimulate nucleotide release from Ssc1 and function in refolding of denatured luciferase, albeit higher concentrations of mutant protein than wild-type protein were required. In vitro and in vivo assays using K108A/R213A Mge1 and Ssc1 indicated that the disruption of contact at this site destabilized the interaction between the two proteins. We propose that the direct interaction between the loop of Ssc1 and Mge1 is not required to effect nucleotide release but plays a role in stabilization of the Mge1-Ssc1 interaction. The robust growth of the K108A/R213A MGE1 mutant suggests that the interaction between Mge1 and Ssc1 is tighter than required for function in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号