首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2008年   1篇
  2004年   1篇
  2000年   1篇
  1987年   1篇
排序方式: 共有4条查询结果,搜索用时 328 毫秒
1
1.
On a viewpoint of gender differences in Cd body burden and its health effects, we reviewed the population-based research including our own which conducted in Japan, Thailand, Australia, Poland, Belgium and Sweden to assess health effects of human exposure to environmental cadmium and their potential mechanisms. As a result, six risk factors in Cd health effects in women have been identified; (1) more serious type of renal tubular dysfunction, (2) difference in calcium metabolism and its regulatory hormones, (3) kidney sensitivity; difference in P450 phenotype, (4) pregnancy, (5) body iron store status, and (6) genetic factors. Further studies of Cd toxicity targeted to women would now appear necessary.  相似文献   
2.
The retinal pigment epithelium (RPE) constitutes the blood-retinal barrier, whose function is impaired in various pathological conditions, including cerebral malaria, a lethal complication of Plasmodium falciparum infection. Prostaglandin (PG) D2 is abundantly produced in the brain to regulate sleep responses. Moreover, PGD2 is a potential factor derived from intra-erythrocyte falciparum parasites. Heme oxygenase-1 (HO-1) is important for iron homeostasis via catalysis of heme degradation to release iron, carbon monoxide and biliverdin/bilirubin, and may influence iron supply to the intra-erythrocyte falciparum parasites. Here, we showed that treatment of human RPE cell lines, ARPE-19 and D407, with PGD2 significantly increased the expression levels of HO-1 mRNA, in a dose- and time-dependent manner. Transient expression assays showed that PGD2 treatment increased the HO-1-gene promoter activity through the enhancer sequence, containing a Maf-recognition element. Thus, PGD2 may contribute to the maintenance of heme homeostasis in the brain by inducing HO-1 expression.  相似文献   
3.
This study was undertaken to examine changes in Zn and Cu homeostasis in the liver and kidney of rats caused by cadmium (Cd) or lipopolysaccharide (LPS) administration. Twenty-five male, 7- to 8-week-old Wistar rats were divided into five groups: saline only treatment, saline treatment and food deprivation, exposure to a single dose of Cd, exposure to LPS alone, and exposure to Cd + LPS. Changes in plasma nitrate concentrations and hepatic and renal Zn and Cu contents were measured together with urinary excretion rates for the metals and nitrate on 3 consecutive days: 24 h before treatment and 24 and 48 h after treatments. Cd exposure alone for 48 h caused a nearly 2-fold increase in plasma nitrate levels with no changes in urinary nitrate excretion whereas LPS treatment caused plasma nitrate levels to increase by 10-fold and urinary nitrate excretion to increase by 4-fold. Administration of LPS 24 h after Cd exposure caused a 10-fold increase in plasma nitrate concentrations and a 100-fold increase in urinary nitrate excretion compared to the rates prior to LPS administration. These results indicate a synergistic interaction between Cd and LPS toxicity. Cd exposure also caused a marked increase in hepatic Zn levels, but LPS did not cause any changes in hepatic Zn or Cu content. In sharp contrast, both Zn and Cu contents were decreased in the kidneys by 16 and 36% in animals exposed to Cd or LPS. A correlation analysis of measured variables reveals that renal Cu contents were inversely associated with plasma nitrate concentrations while urinary Cu excretion on day 3 showed a strong positive correlation with both urinary nitrate and Cd excretions on the same day. A linear regression analysis shows 20% of the variation in urinary Cu excretion was associated with urinary Cd excretion on the same day. It is concluded that reductions in renal Cu contents caused by Cd or LPS administration may be a result of Cd and NO displacement of Cu previously bound to metallothionein.  相似文献   
4.
Protein synthesis and degradation, and redox state were measured in soleus and extensor digitorum longus muscles of rats up to 12 days after injection of streptozotocin. Muscle growth was slower in these animals apparently due to slower protein synthesis throughout the duration of diabetes. Up to day 4 after injection of streptozotocin or withdrawal of insulin from treated, diabetic animals, the muscle ratio of lactate/pyruvate, an indicator of the cytoplasmic NAD+ redox couple, was lower and protein degradation was faster than in control muscles. Thereafter, the ratio of lactate/pyruvate was greater and protein degradation was slower than in size- or age-matched control muscles. Insulin treatment in vitro or in vivo increased lactate/pyruvate and decreased proteolysis. Therefore, in muscles of streptozotocin-diabetic rats, the initial increase and later fall in proteolysis, and the inhibition of proteolysis by insulin, may correlate with opposite changes in NADH/NAD+.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号