首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   87篇
  国内免费   3篇
  2024年   3篇
  2023年   33篇
  2022年   51篇
  2021年   100篇
  2020年   93篇
  2019年   134篇
  2018年   96篇
  2017年   71篇
  2016年   88篇
  2015年   59篇
  2014年   99篇
  2013年   115篇
  2012年   102篇
  2011年   104篇
  2010年   51篇
  2009年   55篇
  2008年   51篇
  2007年   54篇
  2006年   45篇
  2005年   33篇
  2004年   36篇
  2003年   15篇
  2002年   24篇
  2001年   10篇
  2000年   7篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   2篇
  1995年   7篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1983年   6篇
  1982年   3篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1973年   3篇
  1971年   2篇
  1970年   3篇
  1969年   4篇
  1967年   2篇
  1966年   4篇
  1965年   3篇
排序方式: 共有1629条查询结果,搜索用时 31 毫秒
1.
Although diabetes has been identified as a major risk factor for atrial fibrillation, little is known about glucose metabolism in the healthy and diabetic atria. Glucose transport into the cell, the rate-limiting step of glucose utilization, is regulated by the Glucose Transporters (GLUTs). Although GLUT4 is the major isoform in the heart, GLUT8 has recently emerged as a novel cardiac isoform. We hypothesized that GLUT-4 and -8 translocation to the atrial cell surface will be regulated by insulin and impaired during insulin-dependent diabetes. GLUT protein content was measured by Western blotting in healthy cardiac myocytes and type 1 (streptozotocin-induced, T1Dx) diabetic rodents. Active cell surface GLUT content was measured using a biotinylated photolabeled assay in the perfused heart. In the healthy atria, insulin stimulation increased both GLUT-4 and -8 translocation to the cell surface (by 100% and 240%, respectively, P<0.05). Upon insulin stimulation, we reported an increase in Akt (Th308 and s473 sites) and AS160 phosphorylation, which was positively (P<0.05) correlated with GLUT4 protein content in the healthy atria. During diabetes, active cell surface GLUT-4 and -8 content was downregulated in the atria (by 70% and 90%, respectively, P<0.05). Akt and AS160 phosphorylation was not impaired in the diabetic atria, suggesting the presence of an intact insulin signaling pathway. This was confirmed by the rescued translocation of GLUT-4 and -8 to the atrial cell surface upon insulin stimulation in the atria of type 1 diabetic subjects. In conclusion, our data suggest that: 1) both GLUT-4 and -8 are insulin-sensitive in the healthy atria through an Akt/AS160 dependent pathway; 2) GLUT-4 and -8 trafficking is impaired in the diabetic atria and rescued by insulin treatment. Alterations in atrial glucose transport may induce perturbations in energy production, which may provide a metabolic substrate for atrial fibrillation during diabetes.  相似文献   
2.
Lead is a heavy metal widely distributed in the environment. Lead is a ubiquitous environmental toxin that is capable of causing numerous acute and chronic illnesses. Human and animal exposure demonstrates that lead is nephrotoxic. However, attempts to reduce lead-induced nephrotoxicity were not found suitable for clinical use. Recently, flaxseed oil (FXO), a rich source of ω-3 fatty acids and lignans, has been shown to prevent/reduce the progression of certain types of cardiovascular and renal disorders. In view of this, the present study investigates the protective effect of FXO on lead acetate (PbAc)-induced renal damage. Rats were pre-fed normal diet and the diet rich in FXO for 14 days, and then, four doses of lead acetate (25 mg/kg body weight) were administered intraperitoneally while still on diet. Various serum parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), and oxidative stress were analyzed in rat kidney. PbAc nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. PbAc increased the activities of lactate dehydrogenase and NADP-malic enzyme, whereas it decreased malate and glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and BBM enzyme activities. PbAc caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased activities of superoxide dismutase, glutathione peroxidase, and catalase. In contrast, FXO alone enhanced the enzyme activities of carbohydrate metabolism, BBM, and antioxidant defense system. FXO feeding to PbAc-treated rats markedly enhanced resistance to PbAc-elicited deleterious effects. In conclusion, dietary FXO supplementation ameliorated PbAc-induced specific metabolic alterations and oxidative damage by empowering antioxidant defense mechanism and improving BBM integrity and energy metabolism.  相似文献   
3.
The performance of The Subhuman Primate Pregnancy Test Kit was evaluated for routine detection of early (days 19-21) pregnancy in the rhesus monkey. Out of 123 confirmed matings, 19 resulted in pregnancy. In the pregnant animals the kit had an accuracy of 73.7%. In the nonpregnant females the accuracy was higher, 88.5%. False positives were encountered in ovariectomized females as well as adult intact males.  相似文献   
4.
The rotational motions of human fibrinogen in solution at 20 degrees C have been examined, in the 0.2-12-microseconds time range, by measuring the laser-induced dichroism of the triplet state of an erythrosin probe covalently bonded to the protein. The decay of the anisotropy was multiexponential, and up to three correlation times (phi 1 = 380 +/- 50 ns, phi 2 = 1.1 +/- 0.1 microseconds, and phi 3 = 3.3 +/- 0.6 microseconds) were needed to obtain a satisfactory analysis. The experimental data are consistent with the brownian motions of an elongated, rigid particle. If the correlation times are combined with previous data on the intrinsic viscosity of fibrinogen, the rotational and translational diffusive properties of the protein can be reproduced with high accuracy by idealizing it as an elongated ellipsoid of revolution with dimensions (2a x 2b) of (54 +/- 6) x (7.2 +/- 0.5) nm, having rotational diffusion constants of D parallel = (6.2 +/- 0.7) x 10(5) s-1 and D perpendicular = (5 +/- 1) x 10(4) s-1. The possibility of Ca(2+)-dependent changes in the rigidity or conformation of fibrinogen was excluded by examining the submicrosecond time-resolved fluorescence depolarization of 1-methylpyrene conjugates of the protein in the presence of different calcium concentrations. Although there are inherent difficulties to extrapolate the data on isolated fibrinogen molecules to the polymerizing species, this relatively stiff conformation meets the requirements of the classical half-staggered double-stranded model of fibrin polymerization rather better than those of the recently proposed interlocked single-stranded mechanism.  相似文献   
5.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
6.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
7.
The interleukin-2 receptor (IL-2R) is composed of at least three cell surface subunits, IL-2R alpha, IL-2R beta, and IL-2R gamma c. On activated T-cells, the alpha- and beta-subunits exist as a preformed heterodimer that simultaneously captures the IL-2 ligand as the initial event in formation of the signaling complex. We used BIAcore to compare the binding of IL-2 to biosensor surfaces containing either the alpha-subunit, the beta-subunit, or both subunits together. The receptor ectodomains were immobilized in an oriented fashion on the dextran matrix through unique solvent-exposed thiols. Equilibrium analysis of the binding data established IL-2 dissociation constants for the individual alpha- and beta-subunits of 37 and 480 nM, respectively. Surfaces with both subunits immobilized, however, contained a receptor site of much higher affinity, suggesting the ligand was bound in a ternary complex with the alpha- and beta-subunits, similar to that reported for the pseudo-high-affinity receptor on cells. Because the binding responses had the additional complexity of being mass transport limited, obtaining accurate estimates for the kinetic rate constants required global fitting of the data sets from multiple surface densities of the receptors. A detailed kinetic analysis indicated that the higher-affinity binding sites detected on surfaces containing both alpha- and beta-subunits resulted from capture of IL-2 by a preformed complex of these subunits. Therefore, the biosensor analysis closely mimicked the recognition properties reported for these subunits on the cell surface, providing a convenient and powerful tool to assess the structure-function relationships of this and other multiple subunit receptor systems.  相似文献   
8.
Mycobacteria have the ability to persist within host phagocytes, and their success as intracellular pathogens is thought to be related to the ability to modify their intracellular environment. After entry into phagocytes, mycobacteria-containing phagosomes acquire markers for the endosomal pathway, but do not fuse with lysosomes. The molecular machinery that is involved in the entry and survival of mycobacteria in host cells is poorly characterized. Here we describe the use of organelle electrophoresis to study the uptake of Mycobacterium bovis bacille Calmette Guerin (BCG) into murine macrophages. We demonstrate that live, but not dead, mycobacteria occupy a phagosome that can be physically separated from endosomal/lysosomal compartments. Biochemical analysis of purified mycobacterial phagosomes revealed the absence of endosomal/lysosomal markers LAMP-1 and β-hexosaminidase. Combining subcellular fractionation with two-dimensional gel electrophoresis, we found that a set of host proteins was present in phagosomes that were absent from endosomal/lysosomal compartments. The residence of mycobacteria in compartments outside the endosomal/lysosomal system may explain their persistence inside host cells and their sequestration from immune recognition. Furthermore, the approach described here may contribute to an improved understanding of the molecular mechanisms that determine the intracellular fate of mycobacteria during infection.  相似文献   
9.
10.
Summary Leaf disc transformation-regeneration technique was applied to the drought tolerant wild relative of cultivated tomato,Lycopersicon chilense, using a plasmid construct which contained the coding sequences of neomycin phosphotransferase (NPTII) and chloramphenicol acetyltransferase (CAT) genes. The two genotypes used, LA2747 and LA1930, showed a distinct difference in their aptitude to transformation; a higher success rate was obtained for the first genotype in every stage of the process. Shoots were formed on the regeneration medium containing 100 g/ml kanamycin through direct or indirect organogenesis. Root formation became only possible when the concentration of kanamycin was reduced to 50 g/ml. Expression of chloramphenicol acetyltransferase gene was observed in all of the kanamycin-screened plants after they matured; the activity of the gene was absent or low in some of the young plants. The presence of the CAT gene in transgenic plants was further confirmed by Southern blot analysis. Although transgenic plants grew to maturity, they did not produce fruit, owing to the self incompatibility ofL. chilense. Abbreviations BAP 6-benzylaminopurine - CAT chloramphenicol acetyltransferase - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - LB Luria Broth - EDTA ethylenediamine-tetraacetic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号