首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2016年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
MOTIVATION: The lack of new antimicrobials, combined with increasing microbial resistance to old ones, poses a serious threat to public health. With hundreds of genomes sequenced, systems biology promises to help in solving this problem by uncovering new drug targets. RESULTS: Here, we propose an approach that is based on the mapping of the interactions between biochemical agents, such as proteins and metabolites, onto complex networks. We report that nodes and links in complex biochemical networks can be grouped into a small number of classes, based on their role in connecting different functional modules. Specifically, for metabolic networks, in which nodes represent metabolites and links represent enzymes, we demonstrate that some enzyme classes are more likely to be essential, some are more likely to be species-specific and some are likely to be both essential and specific. Our network-based enzyme classification scheme is thus a promising tool for the identification of drug targets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   
2.
The lack of specific markers for stem cells makes the physical identification of this compartment difficult. Hematopoietic stem cells differ in their repopulating and self-renewal potential. Our study shows that multiple classes of human hematopoietic CD34+ greatly differ in telomere length. Flow-cytometry-based fluorescent in situ hybridization and confocal microscopy of CD34+ cells has revealed remarkable telomere length heterogeneity, with a hybridization pattern consistent with different classes of human hematopoietic progenitor cells. These results also point to the existence of a significant clonal heterogeneity among primitive hematopoietic cells and provide the first evidence of a rare fraction of CD34+ cells with large telomeres in humans. Marta García-Escarp and Vanessa Martinez-Muñoz contributed equally to this work.This work was supported by a grant to J.P. from the Spanish Ministry of Science and Technology (SAF2002-02618) and by a grant to V.M.-M. from DakoCytomation.  相似文献   
3.
Many studies demonstrate that there is still a significant gender bias, especially at higher career levels, in many areas including science, technology, engineering, and mathematics (STEM). We investigated field-dependent, gender-specific effects of the selective pressures individuals experience as they pursue a career in academia within seven STEM disciplines. We built a unique database that comprises 437,787 publications authored by 4,292 faculty members at top United States research universities. Our analyses reveal that gender differences in publication rate and impact are discipline-specific. Our results also support two hypotheses. First, the widely-reported lower publication rates of female faculty are correlated with the amount of research resources typically needed in the discipline considered, and thus may be explained by the lower level of institutional support historically received by females. Second, in disciplines where pursuing an academic position incurs greater career risk, female faculty tend to have a greater fraction of higher impact publications than males. Our findings have significant, field-specific, policy implications for achieving diversity at the faculty level within the STEM disciplines.  相似文献   
4.
With ever-increasing available data, predicting individuals'' preferences and helping them locate the most relevant information has become a pressing need. Understanding and predicting preferences is also important from a fundamental point of view, as part of what has been called a “new” computational social science. Here, we propose a novel approach based on stochastic block models, which have been developed by sociologists as plausible models of complex networks of social interactions. Our model is in the spirit of predicting individuals'' preferences based on the preferences of others but, rather than fitting a particular model, we rely on a Bayesian approach that samples over the ensemble of all possible models. We show that our approach is considerably more accurate than leading recommender algorithms, with major relative improvements between 38% and 99% over industry-level algorithms. Besides, our approach sheds light on decision-making processes by identifying groups of individuals that have consistently similar preferences, and enabling the analysis of the characteristics of those groups.  相似文献   
5.
Successful attempts to predict judges' votes shed light into how legal decisions are made and, ultimately, into the behavior and evolution of the judiciary. Here, we investigate to what extent it is possible to make predictions of a justice's vote based on the other justices' votes in the same case. For our predictions, we use models and methods that have been developed to uncover hidden associations between actors in complex social networks. We show that these methods are more accurate at predicting justice's votes than forecasts made by legal experts and by algorithms that take into consideration the content of the cases. We argue that, within our framework, high predictability is a quantitative proxy for stable justice (and case) blocks, which probably reflect stable a priori attitudes toward the law. We find that U.S. Supreme Court justice votes are more predictable than one would expect from an ideal court composed of perfectly independent justices. Deviations from ideal behavior are most apparent in divided 5-4 decisions, where justice blocks seem to be most stable. Moreover, we find evidence that justice predictability decreased during the 50-year period spanning from the Warren Court to the Rehnquist Court, and that aggregate court predictability has been significantly lower during Democratic presidencies. More broadly, our results show that it is possible to use methods developed for the analysis of complex social networks to quantitatively investigate historical questions related to political decision-making.  相似文献   
6.
Sales-Pardo M  Chan AO  Amaral LA  Guimerà R 《Gene》2007,402(1-2):81-93
Understanding evolutionary relationships between species can shed new light into the rooting of the tree of life and the origin of eukaryotes, thus, resulting in a long standing interest in accurately assessing evolutionary parameters at time scales on the order of a billion of years. Prior work suggests large variability in molecular substitution rates, however, we still do not know whether such variability is due to species-specific trends at a genomic scale, or whether it can be attributed to the fluctuations inherent in any stochastic process. Here, we study the statistical properties of gene and protein-family sizes in order to quantify the long time scale evolutionary differences and similarities across species. We first determine the protein families of 209 species of bacteria and 20 species of archaea. We find that we are unable to reject the null hypothesis that the protein-family sizes of these species are drawn from the same distribution. In addition, we find that for species classified in the same phylogenetic branch or in the same lifestyle group, family size distributions are not significantly more similar than for species in different branches. These two findings can be accounted for in terms of a dynamical birth, death, and innovation model that assumes identical protein-family evolutionary rates for all species. Our theoretical and empirical results thus strongly suggest that the variability empirically observed in protein-family size distributions is compatible with the expected stochastic fluctuations for an evolutionary process with identical genomic evolutionary rates. Our findings hold special importance for the plausibility of some theories of the origin of eukaryotes which require drastic changes in evolutionary rates for some period during the last 2 billion years.  相似文献   
7.

Background

The rise of electronic publishing [1], preprint archives, blogs, and wikis is raising concerns among publishers, editors, and scientists about the present day relevance of academic journals and traditional peer review [2]. These concerns are especially fuelled by the ability of search engines to automatically identify and sort information [1]. It appears that academic journals can only remain relevant if acceptance of research for publication within a journal allows readers to infer immediate, reliable information on the value of that research.

Methodology/Principal Findings

Here, we systematically evaluate the effectiveness of journals, through the work of editors and reviewers, at evaluating unpublished research. We find that the distribution of the number of citations to a paper published in a given journal in a specific year converges to a steady state after a journal-specific transient time, and demonstrate that in the steady state the logarithm of the number of citations has a journal-specific typical value. We then develop a model for the asymptotic number of citations accrued by papers published in a journal that closely matches the data.

Conclusions/Significance

Our model enables us to quantify both the typical impact and the range of impacts of papers published in a journal. Finally, we propose a journal-ranking scheme that maximizes the efficiency of locating high impact research.  相似文献   
8.
Characterizing interactions between drugs is important to avoid potentially harmful combinations, to reduce off-target effects of treatments and to fight antibiotic resistant pathogens, among others. Here we present a network inference algorithm to predict uncharacterized drug-drug interactions. Our algorithm takes, as its only input, sets of previously reported interactions, and does not require any pharmacological or biochemical information about the drugs, their targets or their mechanisms of action. Because the models we use are abstract, our approach can deal with adverse interactions, synergistic/antagonistic/suppressing interactions, or any other type of drug interaction. We show that our method is able to accurately predict interactions, both in exhaustive pairwise interaction data between small sets of drugs, and in large-scale databases. We also demonstrate that our algorithm can be used efficiently to discover interactions of new drugs as part of the drug discovery process.  相似文献   
9.
The ability of microbial species to consume compounds found in the environment to generate commercially-valuable products has long been exploited by humanity. The untapped, staggering diversity of microbial organisms offers a wealth of potential resources for tackling medical, environmental, and energy challenges. Understanding microbial metabolism will be crucial to many of these potential applications. Thermodynamically-feasible metabolic reconstructions can be used, under some conditions, to predict the growth rate of certain microbes using constraint-based methods. While these reconstructions are powerful, they are still cumbersome to build and, because of the complexity of metabolic networks, it is hard for researchers to gain from these reconstructions an understanding of why a certain nutrient yields a given growth rate for a given microbe. Here, we present a simple model of biomass production that accurately reproduces the predictions of thermodynamically-feasible metabolic reconstructions. Our model makes use of only: i) a nutrient''s structure and function, ii) the presence of a small number of enzymes in the organism, and iii) the carbon flow in pathways that catabolize nutrients. When applied to test organisms, our model allows us to predict whether a nutrient can be a carbon source with an accuracy of about 90% with respect to in silico experiments. In addition, our model provides excellent predictions of whether a medium will produce more or less growth than another () and good predictions of the actual value of the in silico biomass production.  相似文献   
10.
In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals’ social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号