首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2018年   1篇
  2017年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1971年   1篇
排序方式: 共有17条查询结果,搜索用时 218 毫秒
1.
Abstract

8–Cl-cAMP and tiazofurin (TR) are anti-tumor agents that besides their antiproliferative effect, also induce differentiation of tumor cells. Although, these agents exert a profound effect on the same events of tumor cell life, it is thought that 8-Cl-cAMP and TR act by modulating the signal transduction pathway through distinct mechanisms. We have compared their effect on two human glioma cell lines (U87 MG and U251 MG) and examined if there is selectivity in their action toward normal human astrocytes.  相似文献   
2.
3.
8-Cl-cAMP and tiazofurin (TR) are anti-tumor agents that besides their antiproliferative effect, also induce differentiation of tumor cells. Although, these agents exert a profound effect on the same events of tumor cell life, it is thought that 8-Cl-cAMP and TR act by modulating the signal transduction pathway through distinct mechanisms. We have compared their effect on two human glioma cell lines (U87 MG and U251 MG) and examined if there is selectivity in their action toward normal human astrocytes.  相似文献   
4.
Traumatic brain injury (TBI) is a widespread cause of death and a major source of adult disability. Subsequent pathological events occurring in the brain after TBI, referred to as secondary injury, continue to damage surrounding tissue resulting in substantial neuronal loss. One of the hallmarks of the secondary injury process is microglial activation resulting in increased cytokine production. Notwithstanding that recent studies demonstrated that caloric restriction (CR) lasting several months prior to an acute TBI exhibits neuroprotective properties, understanding how exactly CR influences secondary injury is still unclear. The goal of the present study was to examine whether CR (50% of daily food intake for 3 months) alleviates the effects of secondary injury on neuronal loss following cortical stab injury (CSI). To this end, we examined the effects of CR on the microglial activation, tumor necrosis factor-α (TNF-α) and caspase-3 expression in the ipsilateral (injured) cortex of the adult rats during the recovery period (from 2 to 28 days) after injury. Our results demonstrate that CR prior to CSI suppresses microglial activation, induction of TNF-α and caspase-3, as well as neurodegeneration following injury. These results indicate that CR strongly attenuates the effects of secondary injury, thus suggesting that CR may increase the successful outcome following TBI.  相似文献   
5.
Summary The distribution of the preexisting and of thede novo synthesized proteins among soluble, and insoluble fractions, as well as between immunoprecipitable and non-immunoprecipitable soluble proteins has been studied in sea urchin embryos at different stages of development.In the S-100 fraction, which represented about 20% of total proteins, only a minor part of radioactivity was found. The majority of newly synthesized proteins was insoluble at neutral pH. Such distribution was practically invariant for all investigated stages of development, and was not markedly affected by Dactinomycin nor by 5-azacytidine.Only a small percentage of the total radioactivity of the S-100 fraction was found in the antigen-antibody complexes of soluble proteins. No shift of newly synthesized proteins towards the type of old, preexisting antigenic proteins was detected, and the majority of soluble newly synthesized proteins was found to be related to the non-immunoprecipitable soluble proteins.The authors gratefully acknowledge a generous gift of 5-azacytidine from Drs. Doskoil and ponar. We are also indebted to Dr. Miroslav Simi for kind interest and discussion.This work was supported in part by grants No 3111/1 from Federal Research Fund of Yugoslavia and No 02-020-1 from the National Institute of Health, U. S. Department of Health, Education and Welfare (PL-480 programme).  相似文献   
6.
Glioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A. Further correlations revealed that 8 genes might play important role in pathogenesis of glial tumors, while changes in GP2, KCNG2 and KIR3DL3 should be considered as passenger mutations, consequence of high level of genomic instability. Identified genes have a significant role in signal transduction or cell adhesion, which are important processes for cancer development and progression. According to our results, LHFPL3 might be characteristic of primary glioblastoma, SGCG, HTR4, ITGB1, CPS1, PROS1 and INPP5A were detected predominantly in anaplastic astrocytoma, suggesting their role in progression of secondary glioblastoma, while alterations of PDE4D seem to have important role in development of both glioblastoma subtypes. Some of the identified genes showed significant association with p53, p16, and EGFR, but there was no significant correlation between loss of PTEN and any of identified genes. In conclusion our study revealed genetic alterations that were not previously associated with glioma pathogenesis and could be potentially used as molecular markers of different glioblastoma subtypes.  相似文献   
7.
Maintaining the cholesterol homeostasis is essential for normal CNS functioning. The enzyme responsible for elimination of cholesterol excess from the brain is cholesterol 24-hydroxylase (Cyp46). Since cholesterol homeostasis is disrupted following brain injury, in this study we examined the effect of right sensorimotor cortex suction ablation on cellular and temporal pattern of Cyp46 expression in the rat brain. Increased expression of Cyp46 at the lesion site at all post injury time points (2, 7, 14, 28 and 45 days post injury, dpi) was detected. Double immunofluorescence staining revealed colocalization of Cyp46 expression with different types of glial cells in time-dependent manner. In ED1+ microglia/macrophages Cyp46 expression was most prominent at 2 and 7 dpi, whereas Cyp46 immunoreactivity persisted in reactive astrocytes throughout all time points post-injury. However, during the first 2 weeks Cyp46 expression was enhanced in both GFAP+ and Vim+ astrocytes, while at 28 and 45 dpi its expression was mostly associated with GFAP+ cells. Pattern of neuronal Cyp46 expression remained unchanged after the lesion, i.e. Cyp46 immunostaining was detected in dendrites and cell body, but not in axons. The results of this study clearly demonstrate that in pathological conditions, like brain injury, Cyp46 displayed atypical expression, being expressed not only in neuronal cells, but also in microglia and astrocytes. Therefore, injury-induced expression of Cyp46 in microglial and astroglial cells may be involved in the post-injury removal of damaged cell membranes contributing to re-establishment of the brain cholesterol homeostasis.  相似文献   
8.
Reports on clinical trials with subcutaneous and intrapulmonary administration of low-dose heparin suggest that it may be an attractive therapeutic modality for the treatment of coronary artery disease because of unprecedented reduction in mortality of treated subjects. As a preliminary to a clinical trial with low-dose intrapulmonary heparin, a pilot study was conducted on three subjects. It compares overall circadian responses of 37 blood variables following intrapulmonary administration of heparin (10,500-18,800 U) in the morning (0800 h) and in the evening (2000 h). After each of these times, blood samples, mostly at 3 h intervals for the ensuing 27 h, were analyzed for heparin, APTT, TT, functional fibrinogen, CBC, enzymes, lipids, electrolytes, and hormones. Each time series was analyzed for circadian rhythm by the least-squares fit of a 24 h cosine and circadian mesors were compared by the Bingham test of rhythm parameters. Following heparin in the evening, but not in the morning, a statistically significant increase in circulating heparin levels, as well as directional increases in APTT and TT and decreases in fibrinogen, were observed in all three subjects. Same direction changes in several other variables were also observed. It is concluded that inhalation of heparin in low-dose levels results in variable circadian effects on blood parameters measured, ranging from no changes in their levels to minimal within normal range changes, and that these effects are dependent upon the timing of dose administration. It is suggested that the timed self-administration of low-dose heparin by inhalation be seriously considered for long-term clinical trials in the treatment and prevention of atherosclerosis.  相似文献   
9.
Several studies have revealed a role for neurotrophins in anesthesia-induced neurotoxicity in the developing brain. In this study we monitored the spatial and temporal expression of neurotrophic signaling molecules in the brain of 14-day-old (PND14) Wistar rats after the application of a single propofol dose (25 mg/kg i.p). The structures of interest were the cortex and thalamus as the primary areas of anesthetic actions. Changes of the protein levels of the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), their activated receptors tropomyosin-related kinase (TrkA and TrkB) and downstream kinases Akt and the extracellular signal regulated kinase (ERK) were assessed by Western immunoblot analysis at different time points during the first 24 h after the treatment, as well as the expression of cleaved caspase-3 fragment. Fluoro-Jade B staining was used to follow the appearance of degenerating neurons. The obtained results show that the treatment caused marked alterations in levels of the examined neurotrophins, their receptors and downstream effector kinases. However, these changes were not associated with increased neurodegeneration in either the cortex or the thalamus. These results indicate that in the brain of PND14 rats, the interaction between Akt/ERK signaling might be one of important part of endogenous defense mechanisms, which the developing brain utilizes to protect itself from potential anesthesia-induced damage. Elucidation of the underlying molecular mechanisms will improve our understanding of the age-dependent component of anesthesia-induced neurotoxicity.  相似文献   
10.
The study of protein–ionic liquid interactions is very important because of the widespread use of ionic liquids as protein stabilizer in the recent years. In this work, the interaction of bovine serum albumin (BSA) with different imidazolium‐based ionic liquids (ILs) such as [1‐ethyl‐3‐methyl‐imidazolium ethyl sulfate (EmimESO4), 1‐ethyl‐3‐methyl‐imidazolium chloride (EmimCl) and 1‐butyl‐3‐methyl‐imidazolium chloride (BmimCl)] has been investigated using different spectroscopic techniques. The intrinsic fluorescence of BSA is quenched by ILs by the dynamic mechanism. The thermodynamic analysis demonstrates that very weak interactions exist between BSA and ILs. 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) fluorescence and lifetime measurements reveal the formation of the compact structure of BSA in IL medium. The conformational changes of BSA were monitored by CD analysis. Temperature‐dependent ultraviolet (UV) measurements were done to study the thermal stability of BSA. The thermal stability of BSA in the presence of ILs follows the trend EmimESO4 > EmimCl > BmimCl and in the presence of more hydrophobic IL, destabilization increases rapidly as a function of concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号