首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2015年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Sorghum downy mildew caused by Peronosclerospora sorghi is a major disease of maize and resistance is under the control of polygenes which necessitated identification of quantitative-trait loci (QTLs) for initiating marker-assisted introgression of resistant QTLs in elite susceptible inbred lines. In the present study, QTLs for sorghum downy mildew (SDM) resistance in maize were identified based on cosegregation with linked simple sequence repeats in 185 F2 progeny from a cross between susceptible (CM500-19) and resistant (MAI105) parents. F3 families were screened in the National Sorghum Downy Mildew Screening Nursery during 2010 and 2011. High heritability was observed for the disease reaction. The final map generated using 87 SSR markers had 10 linkage groups, spanning a length of 1210.3 cM. Although, we used only 87 SSR markers for mapping, the per cent of genome within 20 cM to the nearest marker was 88.5. Three putative QTLs for SDM resistance were located on chromosomes 3 (bin 3.01), 6 (bin 6.01) and 2 (bin 2.02) using composite interval mapping. The locus on chromosome 3 had a major effect and explained up to 12.6% of the phenotypic variation. The other two QTLs on chromosomes 6 and 2 had minor effects with phenotypic variation of 7.1 and 2%. The three QTLs appeared to have additive effects on resistance. The QTLs on chromosomes 3 and 6 were successfully used in the marker-assisted selection programme for introgression of resistance to SDM in eight susceptible maize lines.  相似文献   
2.
The experimental host range of Odontoglossum ringspot virus (ORSV), a member of the tobamoviruses, includes several species of Nicotiana , but not N. sylvestris . However, ORSV was able to replicate in protoplasts from N. sylvestris leaves. By using the green fluorescent protein (GFP) as a marker inserted into ORSV, it was found that a small number of single epidermal cells became infected in mechanically inoculated leaves, but the virus did not move cell to cell. The ORSV movement protein (MP) and coat protein (CP) were examined for their ability to effect movement by substitution into Tobacco mosaic virus (TMV) hybrids. Both proteins and the 3' non-translated region (NTR) of ORSV allowed movement of TMV hybrids in N. sylvestris . These results suggested that the inability of ORSV to move in N. sylvestris was due to the replicase gene or the 5'NTR. One possibility was that the replicase gene could indirectly affect movement by failing to produce subgenomic (sg) RNAs for expression of MP or CP, but this appeared not to be the case as ORSV replicated and produced MP and CP sgRNAs, both of which were translated in N. sylvestris protoplasts. Additionally, genomic RNA was encapsidated into virions in N. sylvestris protoplasts. Because the 5'NTR permitted efficient replication and production of replicase proteins, these findings suggest that the replicase of ORSV is responsible for the defect in cell-to-cell movement of ORSV in N. sylvestris .  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号