首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
  2021年   1篇
  2020年   3篇
  2018年   1篇
  2016年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Journal of Mathematical Biology - In this paper we introduce a formal method for the derivation of a predator’s functional response from a system of fast state transitions of the prey or...  相似文献   
2.
We present a derivation of various discrete-time population models within a single unifying mechanistic context. By systematically varying the within-year patterns of reproduction and aggression between individuals we can derive various discrete-time population models. These models include classical examples such as the Ricker model, the Beverton-Holt model, the Skellam model, the Hassell model, and others. Some of these models until now lacked a good mechanistic interpretation or have been derived in a different context. By using this mechanistic approach, the model parameters can be interpreted in terms of individual behavior.  相似文献   
3.
We study the evolution of resource utilization in a structured discrete-time metapopulation model with an infinite number of patches, prone to local catastrophes. The consumer faces a trade-off in the abilities to consume two resources available in different amounts in each patch. We analyse how the evolution of specialization in the utilization of the resources is affected by different ecological factors: migration, local growth, local catastrophes, forms of the trade-off and distribution of the resources in the patches. Our modelling approach offers a natural way to include more than two patch types into the models. This has not been usually possible in the previous spatially heterogeneous models focusing on the evolution of specialization.  相似文献   
4.
Evolutionary disarmament in interspecific competition.   总被引:4,自引:0,他引:4  
Competitive asymmetry, which is the advantage of having a larger body or stronger weaponry than a contestant, drives spectacular evolutionary arms races in intraspecific competition. Similar asymmetries are well documented in interspecific competition, yet they seldom lead to exaggerated traits. Here we demonstrate that two species with substantially different size may undergo parallel coevolution towards a smaller size under the same ecological conditions where a single species would exhibit an evolutionary arms race. We show that disarmament occurs for a wide range of parameters in an ecologically explicit model of competition for a single shared resource; disarmament also occurs in a simple Lotka-Volterra competition model. A key property of both models is the interplay between evolutionary dynamics and population density. The mechanism does not rely on very specific features of the model. Thus, evolutionary disarmament may be widespread and may help to explain the lack of interspecific arms races.  相似文献   
5.
6.
We study the evolution of an individual’s reproductive strategy in a mechanistic modeling framework. We assume that the total number of juveniles one adult individual can produce is a finite constant, and we study how this number should be distributed during the season, given the types of inter-individual interactions and mortality processes included in the model. The evolution of the timing of reproduction in this modeling framework has already been studied earlier in the case of equilibrium resident dynamics, but we generalize the situation to also fluctuating population dynamics. We find that, as in the equilibrium case, the presence or absence of inter-juvenile aggression affects the functional form of the evolutionarily stable reproductive strategy. If an ESS exists, it can have an absolutely continuous part only if inter-juvenile aggression is included in the model. If inter-juvenile aggression is not included in the model, an ESS can have no continuous parts, and only Dirac measures are possible.  相似文献   
7.
Geritz  S.  Gyllenberg  M.  Toivonen  J. 《Journal of mathematical biology》2018,77(6-7):1943-1968

We present a model for the coevolution of seed size and germination time within a season when both affect the ability of the seedlings to compete for space. We show that even in the absence of a morphological or physiological constraint between the two traits, a correlation between seed size and germination time is nevertheless likely to evolve. This raises the more general question to what extent a correlation between any two traits should be considered as an a priori constraint or as an evolved means (or “instrument”) to actually implement a beneficial combination of traits. We derive sufficient conditions for the existence of a positive or a negative correlation. We develop a toy model for seed and seedling survival and seedling growth and use this to illustrate in practice how to determine correlations between seed size and germination time.

  相似文献   
8.
Beginners in life history theory or evolutionary ecology seemingly face a variety of almost unrelated approaches. Yet the biomathematical literature of the last 10-20 years reflects the implicit acceptance of a common evolutionary framework, the core idea being that there exists a unique general fitness measure that concisely summarizes the overall time course of potential invasions by initially rare mutant phenotypes. Using such an invasion criterion to characterize fitness implicitly presupposes a scenario in which, during periods o f clear evolutionary change, the rate of evolution is set primarily by the random occurrence (and initial establishment) of favourable mutations. Evolutionarily stable life history strategies (ESSs) may then be regarded as traps for the evolutionary random walk.  相似文献   
9.
We derive from first principles the functional response of the predator and the reproduction rate of the prey in the case that the prey form groups as a defence against the predator and the latter captures only single prey. We also give some examples of the resulting predator–prey population dynamics.  相似文献   
10.
We demonstrate how a genetic polymorphism of distinctly different alleles can develop during long-term frequency-dependent evolution in an initially monomorphic diploid population, if mutations have only small phenotypic effect. As a specific example, we use a version of Levene's (1953) soft selection model, where stabilizing selection acts on a continuous trait within each of two habitats. If the optimal phenotypes within the habitats are sufficiently different, then two distinctly different alleles evolve gradually from a single ancestral allele. In a wide range of parameter values, the two locally optimal phenotypes will be realized by one of the homozygotes and the heterozygote, rather than by the two homozygotes. Unlike in the haploid analogue of the model, there can be multiple polymorphic evolutionary attractors with different probabilities of convergence. Our results differ from the population genetic models of short-term evolution in two aspects: (1) a polymorphism that is population genetically stable may be invaded by a new mutant allele and, as a consequence, the population may fall back to monomorphism, (2) long-term evolution by allele substitutions may lead from a population where polymorphism is not possible into one where polymorphism is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号