首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   9篇
  2013年   10篇
  2012年   14篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   11篇
  2007年   11篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   6篇
  2002年   6篇
  2000年   2篇
  1999年   1篇
  1996年   3篇
  1994年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1976年   2篇
  1975年   2篇
排序方式: 共有140条查询结果,搜索用时 156 毫秒
1.
The advantage of using terrestrial isopods in toxicity studies is that a battery of parameters can be tested at different levels of biological complexity. Feeding parameters for example link organism level response to potential ecological consequences but a problem with using feeding parameters in toxicity tests with terrestrial isopods is their high variability. The aim of our study was to set benchmark values for feeding parameters for isopod Porcellio scaber (Isopoda, Crustacea) in laboratory-controlled experiments. In the work presented here, the daily feeding rate of the central 50% of the control population of Porcellio scaber and a correlation between feeding rate and isopod weight were set. Values outside these ranges need additional evaluation to increase the relevance of test outcomes. We suggest using benchmark values for feeding parameters as well as the coefficient of variation (a) to identify animals with altered feeding parameters with respect to controls, and (b) to assess the data quality in each experiment.  相似文献   
2.
Summary The morphological development ofClaviceps paspali immobilized in Ca-alginate gel was examined. During consecutive reincubations, the immobilized mycelia differentiated into swollen, arthrosporoid-like cells, which never appeared during fermentation of free mycelium. Such differentiation could be connected with the improved, prologed vitality and metabolic activity of the immobilized cells.  相似文献   
3.
The phenomena following the transformation of the fungusCochliobolus lunatus by plasmid-encoded HmB resistance were investigated. All of the 16 tested transformants had markedly altered morphology. Unlike the untransformed fungus, the transformants produced both conidia and arthrospores, did not excrete slime, lost their purple color, and had an altered progesterone-bioconverting pathway.  相似文献   
4.
The value of Y-body study for assessment of stromal cell engraftment was analyzed in 25 patients submitted to allogeneic bone marrow transplantation (BMT) (sex-matched in 12 cases and sex-mismatched in 13). The study was performed weekly on bone marrow smears until day +35, and the results were compared with those obtained in a control group of 20 patients submitted to autologous BMT (12 males and 8 females). Engraftment of haemopoietic cells was documented in all cases. The results of Y-body study on the recipients' fibroblast cells showed a pattern identical to that observed prior to BMT, independent of donor's sex. On the other hand, there were no differences between allogeneic and autologous BMT recipients in regard to percentage of Y-body positive cells. These results indicate that in allogeneic BMT there is no engraftment of the fibroblastic component of bone marrow stroma.  相似文献   
5.
6.
The relationship between the bone mineral density (BMD) in Croatian female adults and the average incoming solar radiation at the ground was investigated. The study included 387 volunteers of average age of 60 years from three different towns: Pula (n = 128, age from 35 to 76), Krapina (n = 141, age from 43 to 77), and Zagreb (n = 118, age from 32 to 79). Apart from the different lifestyle, each of above towns is characterized by different incoming solar radiation, where values of 503.3 kJ cm-2, 471.2 kJ cm-2 and 436.3 kJ cm-2 correspond to average annual radiation at the ground for Pula, Krapina and Zagreb, respectively. Heel BMD was measured by clinical bone sonometer (Sahara). On the average the BMD was highest for Pula (0.469 g cm-2) and the lowest for Zagreb (0.433 g cm-2). Similarly, the percentage of normal bones was the highest for Pula (46.1%) and the lowest for Zagreb (32.2%). Osteopenic bones were the most frequent for Zagreb (61.0%), while corresponding figures for Pula and Krapina were 46.9% and 43.6%, respectively. Osteoporosis varied from 6.8% in Zagreb to 11.4% in Krapina. A test of independence by contingency table confirmed at the significance level alpha = 0.05 that probability of normal bone occurrence increases with the increase of incoming solar radiation. Results of the multiple regression analysis suggest the dependence of BMD on woman's age and weight, and incoming solar radiation at the place of habitation.  相似文献   
7.
Morphological, cytological and transport properties of the integument of Salamandra salamandra were investigated during natural ontogenetic development, from birth to adult. Three stages were operationally defined: I, larvae, from birth to metamorphosis; II, metamorphosis (judged externally by the colour change and loss of the gills); and III, post-metamorphosis to adult. Pieces of skin were fixed at various stages for immunocytochemical examinations, and the electrical properties were investigated on parallel pieces. Distinct cellular changes take place in the skin during metamorphosis, and lectin (PNA, WGA and ConA) binding indicates profound changes in glycoprotein composition of cell membranes, following metamorphosis. Band 3 and carbonic anhydrase I (CA I) were confined to mitochondria-rich (MR)-like cells, and were detected only in the larval stage. CA II on the other hand, was detected both in MR-like and in MR cells following metamorphosis. The electrical studies show that the skin becomes more tight (transepithelial resistance increases) upon metamorphosis, followed by manifestation of amiloride-sensitive short-circuit current (I(SC)) indicating that functional Na+ uptake has been acquired. The skin of metamorphosed adults had no finite transepithelial Cl- conductance, and band 3 was not detected in its MR cells. The functional properties of MR-like and MR cells remain to be established.  相似文献   
8.
Toxic water soluble polymeric 3-alkylpyridinium salts isolated from the sponge Raniera sarai strongly inhibited AChE in vitro. In vivo, experimental animals died due to plugs formed in microcirculation. The mechanism of this plug formation is unknown. In vitro, the toxin did not affect the coagulation rate, but the rate of platelet aggregation was accelerated in a dose-dependent manner. The hemolytic activity of poly-APS was diminished by the addition of serum proteins in a dose-dependent manner. These results support the conclusion that non-specific binding to proteins is the underlying mechanism of the lethality of poly APS.  相似文献   
9.
The onset of active Na(+) transport and activated Cl(-) conductance (G(Cl)) across the skin epithelium of Pelobates syriacus was investigated during natural ontogenetic development. Structural features, including band three and Peanut lectin bindings were tested in parallel and structure-function relationships were attempted. The 22 specimens studied were divided into two tadpole, three juvenile, and two adult stages, corresponding to the Taylor-Kollros standard table, in accordance with external morphology of their developmental stage. Onset of transepithelial electrical potential and drop in conductance occurred abruptly, coinciding with metamorphosis climax of tadpoles into juveniles at about stage XXI of development. Amiloride-sensitive Na(+) transport occurred a little later at stage XXIII, followed by the appearance of activated Cl(-) conductance, G(Cl). Parallel structural examination showed that skin MR cells occurred upon metamorphosis, as the tadpole integument transformed into the adult epithelium and could be associated with the occurrence of activated G(Cl). It was not related temporally with the appearance of band three protein in MR cells. Our findings support the association of G(Cl) with MR cells, whereas band three may only be a corollary of G(Cl) and not necessarily essential for its manifestation.  相似文献   
10.
The basidiomycetous genus Wallemia is an active inhabitant of hypersaline environments, and it has recently been described as comprising three halophilic and xerophilic species: Wallemia ichthyophaga, Wallemia muriae, and Wallemia sebi. Considering the important protective role the fungal cell wall has under fluctuating physicochemical environments, this study was focused on cell morphology changes, with particular emphasis on the structure of the cell wall, when these fungi were grown in media with low and high salinities. We compared the influence of salinity on the morphological characteristics of Wallemia spp. by light, transmission, and focused-ion-beam/scanning electron microscopy. W. ichthyophaga was the only species of this genus that was metabolically active at saturated NaCl concentrations. W. ichthyophaga grew in multicellular clumps and adapted to the high salinity with a significant increase in cell wall thickness. The other two species, W. muriae and W. sebi, also demonstrated adaptive responses to the high NaCl concentration, showing in particular an increased size of mycelial pellets at the high salinities, with an increase in cell wall thickness that was less pronounced. The comparison of all three of the Wallemia spp. supports previous findings relating to the extremely halophilic character of the phylogenetically distant W. ichthyophaga and demonstrates that, through morphological adaptations, the eukaryotic Wallemia spp. are representative of eukaryotic organisms that have successfully adapted to life in extremely saline environments.Hypersaline habitats had long been considered to be populated almost exclusively by prokaryotic organisms and the research on hypersaline environments had consequently been monopolized by bacteriologists. In 2000, the first reports appeared showing that fungi are active inhabitants of solar salterns (20). Until then, fungi able to survive in environments with a low amount of biologically available water (low water activity [aw]) were only known as contaminants of foods preserved with high concentrations of salt or sugar. Since their first discovery in salterns, many new species have been discovered in natural hypersaline environments around the world, including some species that were previously known only as food-borne contaminants. Due to these discoveries, fungi are now recognized as an integral part of indigenous halophilic microbial communities since they can grow and adjust across the whole salinity range, from freshwater to almost saturated NaCl solutions (49). Most fungi differ from the majority of halophilic prokaryotes (16): they tend to be extremely halotolerant rather than halophilic and do not require salt to remain viable, with the exception of Wallemia spp.The order Wallemiales (Wallemiomycetes, Basidiomycota) was only recently introduced to define the single genus Wallemia, a phylogenetic maverick in the Basidiomycota (49). Until 2005, this genus contained only the species W. sebi. However, taxonomic analyses of isolates from sweet, salty, and dried foods (41) and from hypersaline evaporation ponds in the Mediterranean Sea, the Caribbean, and the Dead Sea (45, 49) have resolved this genus into three species: W. ichthyophaga, W. muriae, and W. sebi. The first two of these three Wallemia spp. require additional solutes in the growth media, and W. ichthyophaga is the most halophilic eukaryote described to date, since it cannot grow without the addition of 9% NaCl (wt/vol), and it still shows growth at aw of 0.77, equivalent to 30% NaCl (wt/vol) (49).The survival, and especially the growth, of microorganisms in highly saline environments requires numerous adaptations (6, 18, 21, 34). The dominant representatives and the most thoroughly investigated halophilic fungi in hypersaline waters of the salterns are the black yeasts, and particularly the model organism Hortaea werneckii (20). An important level of adaptation of the black yeasts to high salinity is seen in their extremophilic ecotype, which is characterized by a special meristematic morphology and changes in cell wall structure and pigmentation (27). Other fungal osmoadaptations include the accumulation of osmolytes (27, 28, 40), the extrusion of sodium (5), modification of the plasma membrane (44) and the cell wall, and even changes in fungal colony morphology (27).The fungal cell wall is the first line of defense against environmental stress; therefore, adaptation at the cell wall level is expected to have one of the most important roles for successful growth at a low aw (24, 32). The cell wall is essential for maintaining the osmotic homeostasis of cells, since it protects them against mechanical damage as well as high concentrations of salts (7). The central fibrillar glycan network of the cell wall is embedded in highly flexible amorphous cement, which allows considerable stretching with changing osmotic pressure (14, 29). Its balance between a rigid and a dynamic structure influences the shape of cells (14) and enables growth and hyphal branching (11).Since the species within the genus Wallemia have been recognized only recently (49), little is known about their mechanisms of adaptation to high salinity. To investigate the effects of low and high NaCl concentrations on cell morphology, with particular emphasis on cell wall ultrastructure, we compared W. ichthyophaga, the most halophilic fungal species known thus far, with the related xerophilic W. muriae and W. sebi. Micrographs were prepared by using light, transmission, and scanning electron microscopy. The results reveal how this eukaryotic genus uses adaptations at the cell wall level for thriving in extremely saline environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号