首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4048篇
  免费   432篇
  国内免费   1篇
  2024年   5篇
  2023年   11篇
  2022年   56篇
  2021年   89篇
  2020年   57篇
  2019年   49篇
  2018年   85篇
  2017年   80篇
  2016年   132篇
  2015年   238篇
  2014年   238篇
  2013年   272篇
  2012年   335篇
  2011年   357篇
  2010年   232篇
  2009年   201篇
  2008年   270篇
  2007年   284篇
  2006年   258篇
  2005年   189篇
  2004年   176篇
  2003年   174篇
  2002年   169篇
  2001年   55篇
  2000年   37篇
  1999年   49篇
  1998年   32篇
  1997年   20篇
  1996年   17篇
  1995年   12篇
  1994年   12篇
  1993年   19篇
  1992年   30篇
  1991年   19篇
  1990年   20篇
  1989年   13篇
  1988年   18篇
  1987年   27篇
  1986年   14篇
  1985年   20篇
  1984年   13篇
  1983年   8篇
  1982年   11篇
  1981年   7篇
  1980年   9篇
  1977年   7篇
  1975年   5篇
  1974年   5篇
  1972年   3篇
  1971年   4篇
排序方式: 共有4481条查询结果,搜索用时 15 毫秒
1.
2.
The precise regulation of synapse maintenance is critical to the development and function of neuronal circuits. Using an in vivo RNAi screen targeting the Drosophila kinome and phosphatome, we identify 11 kinases and phosphatases controlling synapse stability by regulating cytoskeletal, phospholipid, or metabolic signaling. We focus on casein kinase 2 (CK2) and demonstrate that the regulatory (β) and catalytic (α) subunits of CK2 are essential for synapse maintenance. CK2α kinase activity is required in the presynaptic motoneuron, and its interaction with CK2β, mediated cooperatively by two N-terminal residues of CK2α, is essential for CK2 holoenzyme complex stability and function in vivo. Using genetic and biochemical approaches we identify Ankyrin2 as a key presynaptic target of CK2 to maintain synapse stability. In addition, CK2 activity controls the subcellular organization of individual synaptic release sites within the presynaptic nerve terminal. Our study identifies phosphorylation of structural synaptic components as a compelling mechanism to actively control the development and longevity of synaptic connections.  相似文献   
3.
4.
5.
6.
Aim Species capable of vigorous growth under a wide range of environmental conditions should have a higher chance of becoming invasive after introduction into new regions. High performance across environments can be achieved either by constitutively expressed traits that allow for high resource uptake under different environmental conditions or by adaptive plasticity of traits. Here we test whether invasive and non‐invasive species differ in presumably adaptive plasticity. Location Europe (for native species); the rest of the world and North America in particular (for alien species). Methods We selected 14 congeneric pairs of European herbaceous species that have all been introduced elsewhere. One species of each pair is highly invasive elsewhere in the world, particularly so in North America, whereas the other species has not become invasive or has spread only to a limited degree. We grew native plant material of the 28 species under shaded and non‐shaded conditions in a common garden experiment, and measured biomass production and morphological traits that are frequently related to shade tolerance and avoidance. Results Invasive species had higher shoot–root ratios, tended to have longer leaf‐blades, and produced more biomass than congeneric non‐invasive species both under shaded and non‐shaded conditions. Plants responded to shading by increasing shoot–root ratios and specific leaf area. Surprisingly, these shade‐induced responses, which are widely considered to be adaptive, did not differ between invasive and non‐invasive species. Main conclusions We conclude that high biomass production across different light environments pre‐adapts species to become invasive, and that this is not mediated by plasticities of the morphological traits that we measured.  相似文献   
7.
Summary The voltage-dependent sodium channel from the eel electroplax was purified and reconstituted into vesicles of varying lipid composition. Isotopic sodium uptake experiments were conducted with vesicles at zero membrane potential, using veratridine to activate channels and tetrodotoxin to block them. Under these conditions, channel-dependent uptake of isotopic sodium by the vesicles was observed, demonstrating that a certain fraction of the reconstituted protein was capable of mediating ion fluxes. In addition, vesicles untreated with veratridine showed significant background uptake of sodium; a considerable proportion of this flux was blocked by tetrodotoxin. Thus these measurements showed that a significant subpopulation of channels was present that could mediate ionic fluxes in the absence of activating toxins. The proportion of channels exhibiting this behavior was dependent on the lipid composition of the vesicles and the temperature at which the uptake was measured; furthermore, the effect of temperature was reversible. However, the phenomenon was not affected by the degree of purification of the protein used for reconstitution, and channels in resealed electroplax membrane fragments or reconstituted, solely into native eel lipids did not show this behavior. The kinetics of vesicular uptake through these spontaneously-opening channels was slow, and we attribute this behavior to a modification of sodium channel inactivation.  相似文献   
8.
9.
10.
Phosphatidic acid was a potent activator of the phosphatidylinositol 4,5-bisphosphate (PtdIns-P2) phospholipase C activity associated with human platelet membranes. Lysophosphatidic acid was half as active as phosphatidic acid, and shortening the fatty acid chain reduced the effectiveness of the corresponding phosphatidic acid. Compounds lacking either the phosphate group (diacylglycerol or phorbol ester) or the fatty acid (glycerol phosphate) were not activators. When the negative charge was contributed by a carboxyl group (fatty acid or phosphatidylserine), stimulation of phospholipase C was weak but detectable. Structural analogs of phosphatidic acid (lipopolysaccharide, lipid A, and 2,3-diacylglucosamine 1-phosphate) were less effective but also enhanced PtdIns-P2 hydrolysis. Phosphatidic acid potentiated the activation of phospholipase C by alpha-thrombin, chelators, and guanine nucleotides. Phosphatidylinositol 4-phosphate and PtdIns-P2 were also effective activators of PtdIns-P2 degradation. Other phospholipids were without effect. The production of inositol 1,4,5-trisphosphate and diacylglycerol via the activation of phospholipase C provides a rationale for the cellular responses evoked by phosphatidic acid and the ability of this phospholipid to potentiate and initiate hormonal responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号